54 resultados para Cyclic Ureas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have shown that, besides the well-recognized T3 and T4 hormones, there are other relevant thyroid hormones circulating in the human body. In particular, this is the case for 3-iodothyronamine (T1AM) and thyronamine (T0AM). One of the reasons for the lack of studies showing their precise importance is the absence of analytical methodologies available. Herein, for the first time, T1AM and T0AM are electrochemically characterized. T0AM was sensed by means of a glassy carbon electrode; furthermore, T1AM was sensed both with a graphitic surface (oxidatively) as well as with mercury (reductively). For both compounds, after oxidation, it was possible to observe the reversible redox reaction concerning the benzoquinone/hydroquinone couple, thus increasing the specificity of the electroanalysis. Therefore, this work provides the basis for an ‘at-point-of-use’ electrochemical strip test for T1AM and T0AM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signal-to-interference ratio (SIR) performance of a multiband orthogonal frequency division multiplexing ultra-wideband system with residual timing offset is investigated. To do so, an exact mathematical derivation of the SIR of this system is derived. It becomes obvious that, unlike a cyclic prefixing based system, a zero padding based system is sensitive to residual timing offset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

6th Graduate Student Symposium on Molecular Imprinting

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1st ASPIC International Congress

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel reusable molecularly imprinted polymer (MIP) assembled on a polymeric layer of carboxylated poly(vinyl chloride) (PVCsingle bondCOOH) for myoglobin (Myo) detection was developed. This polymer was casted on the gold working area of a screen printed electrode (Au-SPE), creating a novel disposable device relying on plastic antibodies. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Fourier transform infrared spectroscopy (FTIR) studies confirmed the surface modification. The MIP/Au-SPE devices displayed a linear behaviour in EIS from 0.852 to 4.26 μg mL−1, of positive slope 6.50 ± 1.48 (kΩ mL μg−1). The limit of detection was 2.25 μg mL−1. Square wave voltammetric (SWV) assays were made in parallel and showed linear responses between 1.1 and 2.98 μg mL−1. A current decrease was observed against Myo concentration, producing average slopes of −0.28 ± 0.038 μA mL μg−1. MIP/Au-SPE also showed good results in terms of selectivity. The error% found for each interfering species were 7% for troponin T (TnT), 11% for bovine serum albumin (BSA) and 2% for creatine kinase MB (CKMB), respectively. Overall, the technical modification over the Au-SPE was found a suitable approach for screening Myo in biological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gold screen printed electrode (Au-SPE) was modified by merging Molecular Imprinting and Self-Assembly Monolayer techniques for fast screening cardiac biomarkers in point-of-care (POC). For this purpose, Myoglobin (Myo) was selected as target analyte and its plastic antibody imprinted over a glutaraldehyde (Glu)/cysteamine (Cys) layer on the gold-surface. The imprinting effect was produced by growing a reticulated polymer of acrylamide (AAM) and N,N′-methylenebisacrylamide (NNMBA) around the Myo template, covalently attached to the biosensing surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were carried out in all chemical modification steps to confirm the surface changes in the Au-SPE. The analytical features of the resulting biosensor were studied by different electrochemical techniques, including EIS, square wave voltammetry (SWV) and potentiometry. The limits of detection ranged from 0.13 to 8 μg/mL. Only potentiometry assays showed limits of detection including the cut-off Myo levels. Quantitative information was also produced for Myo concentrations ≥0.2 μg/mL. The linear response of the biosensing device showed an anionic slope of ~70 mV per decade molar concentration up to 0.3 μg/mL. The interference of coexisting species was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel surface molecularly-imprinted (MI) material to detect myoglobin (Myo) using gold screen printed electrodes (SPE) was developed. The sensitive detection was carry out by introducing a carboxylic polyvinyl chloride (PVC-COOH) layer on gold SPE surface. Myo was attached to the surface of gold SPE/PVC-COOH and the vacant spaces around it were filled by polymerizing acrylamide and N,N-methylenebisacrylamide (cross-linker). This polymerization was initiated by ammonium persulphate. After removing the template, the obtained material was able to rebind Myo and discriminate it among other interfering species. Various characterization techniques including electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) confirmed the surface modification. This sensor seemed a promising tool for screening Myo in point-of-care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

6th Graduate Student Symposium on Molecular Imprinting

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NanoPT 2014 International Conference, in Portugal, on February 12-14. Poster presentation based on topic Nanobio/Nanomedicine

Relevância:

10.00% 10.00%

Publicador:

Resumo:

23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente relatório – requisito parcial para obtenção do grau de mestre em Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico – reflete as experiências e conhecimentos desenvolvidos, resultantes da prática pedagógica supervisionada desenvolvida em dois contextos de estágio: Educação Pré-Escolar e 1.º Ciclo do Ensino Básico. Com efeito, a estudante teve como objetivo descrever, compreender e refletir acerca do processo de prática segundo o desenvolvimento de capacidades e competências substanciais à prática docente. Enquanto (futura) profissional de educação, verifica-se pertinente a mobilização de saberes científicos, pedagógicos e culturais, adquiridos ao longo da formação inicial para que se torne exequível uma prática sustentada. Similarmente, o docente, baseando-se em quadros teóricos e concetuais (amplificados de forma subjetiva e continuada), desenvolverá a sua forma pessoal de pensar e agir nos contextos de práticas reais visando a inclusão e equidade educativas, e a colaboração profissional e reflexiva. Conforme a metodologia de investigação-ação (constituída por várias etapas interligadas – observação, planificação, ação e avaliação, reflexão), a ação da mestranda desenvolveu-se de forma cíclica e articulada, numa perspetiva construtivista – e holística – do conhecimento a erigir pelas crianças (atores centrais do processo) ressalvando-se, igualmente, a pertinência dos demais instrumentos orientadores elaborados no decorrer da ação. Concludentemente, os estágios desenvolvidos nos dois contextos facultaram a edificação de uma postura profissional, reflexiva e investigativa, promotora da tomada de decisões em contexto de prática reafirmando-se competências profissionais e pessoais e valorando-se, efetivamente, a formação ao longo da vida para aquele que se constitui um docente generalista.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel electrochemical sensor for ochratoxin A (OTA) detection was fabricated through the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and a molecularly imprinted polymer (MIP). The MWCNTs dramatically promoted the sensitivity of the developed sensor, while polypyrrole (PPy) imprinted with OTA served as the selective recognition element. The imprinted PPy film was prepared by electropolymerization of pyrrole in the presence of OTA as a template molecule via cyclic voltammetry (CV). The electrochemical oxidation of OTA at the developed sensor was investigated by CV and differential pulse voltammetry (DPV). The developed MIP/MWCNT/GCE sensor showed a linear relationship, when using DPV, between peak current intensity and OTA concentration in the range between 0.050 and 1.0 μM, with limits of detection (LOD) and quantification of 0.0041 μM (1.7 μg/L) and 0.014 μM (5.7 μg/L) respectively. With the developed sensor precise results were obtained; relative standard deviations of 4.2% and 7.5% in the evaluation of the repeatability and reproducibility, respectively. The MIP/MWCNT/GCE sensor is simple to fabricate and easy to use and was successfully applied to the determination of OTA in spiked beer and wine samples, with recoveries between 84 and 104%, without the need of a sample pre-treatment step.