130 resultados para Ana Maria Freitas
Resumo:
Este artigo compara o Sistema de Normalização Contabilística (SNC) e o Plano Oficial de Contabilidade (POC), no que respeita ao reconhecimento, mensuração e divulgação dos activos fixos tangíveis. Para o efeito, analisou-se os dois normativos e procedeu-se à elaboração de quadros comparativos. Verificou-se que, de um modo geral, o SNC não se afasta muito do POC, pelo facto deste último nos últimos anos, ter sofrido várias influências anglo-saxónicas, e o SNC baseia-se nas normas internacionais de contabilidade adaptadas pela União Europeia. No entanto, trata-se de um sistema mais complexo do que o POC, contemplando numa só norma, todas as disposições gerais relativamente a esta matéria e remetendo para outras normas o tratamento de situações específicas.
Resumo:
The dominant discourse in education and training policies, at the turn of the millennium, was on lifelong learning (LLL) in the context of a knowledge-based society. As Green points (2002, pp. 611-612) several factors contribute to this global trend: The demographic change: In most advanced countries, the average age of the population is increasing, as people live longer; The effects of globalisation: Including both economic restructuring and cultural change which have impacts on the world of education; Global economic restructuring: Which causes, for example, a more intense demand for a higher order of skills; the intensified economic competition, forcing a wave of restructuring and creating enormous pressure to train and retrain the workforce In parallel, the “significance of the international division of labour cannot be underestimated for higher education”, as pointed out by Jarvis (1999, p. 250). This author goes on to argue that globalisation has exacerbated differentiation in the labour market, with the First World converting faster to a knowledge economy and a service society, while a great deal of the actual manufacturing is done elsewhere.
Resumo:
Jornadas de Contabilidade e Fiscalidade promovidas pelo Instituto Superior de Contabilidade e Administração do Porto, em Abril de 2009
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
This paper presents a Swarm based Cooperation Mechanism for scheduling optimization. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to support decision making in agile manufacturing environments. Agents coordinate their actions automatically without human supervision considering a common objective – global scheduling solution taking advantages from collective behavior of species through implicit and explicit cooperation. The performance of the cooperation mechanism will be evaluated consider implicit cooperation at first stage through ACS, PSO and ABC algorithms and explicit through cooperation mechanism application.
Resumo:
In this paper we present a user-centered interface for a scheduling system. The purpose of this interface is to provide graphical and interactive ways of defining a scheduling problem. To create such user interface an evaluation-centered user interaction development method was adopted: the star life cycle. The created prototype comprises the Task Module and the Scheduling Problem Module. The first one allows users to define a sequence of operations, i.e., a task. The second one enables a scheduling problem definition, which consists in a set of tasks. Both modules are equipped with a set of real time validations to assure the correct definition of the necessary data input for the scheduling module of the system. The usability evaluation allowed us to measure the ease of interaction and observe the different forms of interaction provided by each participant, namely the reactions to the real time validation mechanism.
Resumo:
A novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS), Case-based Reasoning (CBR), and Bio-Inspired Optimization Techniques (BIT) will be described. AC has emerged as a paradigm aiming at incorporating applications with a management structure similar to the central nervous system. The main intentions are to improve resource utilization and service quality. In this paper we envisage the use of MAS paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with AC properties, in order to reduce the complexity of managing manufacturing systems and human interference. The proposed CBR based Intelligent Scheduling System was evaluated under different dynamic manufacturing scenarios.
Resumo:
Scheduling resolution requires the intervention of highly skilled human problemsolvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. This paper addresses the resolution of complex scheduling problems using cooperative negotiation. A Multi-Agent Autonomic and Meta-heuristics based framework with self-configuring capabilities is proposed.