33 resultados para 13368-004


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Anticipatory postural adjustments during gait initiation have an important role in postural stability but also in gait performance. However, these first phase mechanisms of gait initiation have received little attention, particularly in subcortical post-stroke subjects, where bilateral postural control pathways can be impaired. This study aims to evaluate ankle anticipatory postural adjustments during gait initiation in chronic post-stroke subjects with lesion in the territory of middle cerebral artery. Methods: Eleven subjects with post-stroke hemiparesis with the ability to walk independently and twelve healthy controls participated in this study. Bilateral electromyographic activity of tibialis anterior, soleus and medial gastrocnemius was collected during gait initiation to assess the muscle onset timing, period of activation/deactivation and magnitude of muscle activity during postural phase of gait initiation. This phase was identified through centre of pressure signal. Findings: Post-stroke group presented only half of the tibialis anterior relative magnitude observed in healthy subjects in contralesional limb (t=2.38, p=0.027) and decreased soleus deactivation period (contralesional limb, t=2.25, p=0.04; ipsilesional limb, t=3.67, p=0.003) as well its onset timing (contralesional limb, t=3.2. p=0.005; ipsilesional limb, t=2.88, p=0.033) in both limbs. A decreased centre of pressure displacement backward (t=3.45, p=0.002) and toward the first swing limb (t=3.29, p=0.004) was observed in post-stroke subjects. Interpretation: These findings indicate that chronic post-stroke subjects with lesion at middle cerebral artery territory present dysfunction in ankle anticipatory postural adjustments in both limbs during gait initiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomechanical gait parameters—ground reaction forces (GRFs) and plantar pressures—during load carriage of young adults were compared at a low gait cadence and a high gait cadence. Differences between load carriage and normal walking during both gait cadences were also assessed. A force plate and an in-shoe plantar pressure system were used to assess 60 adults while they were walking either normally (unloaded condition) or wearing a backpack (loaded condition) at low (70 steps per minute) and high gait cadences (120 steps per minute). GRF and plantar pressure peaks were scaled to body weight (or body weight plus backpack weight). With medium to high effect sizes we found greater anterior-posterior and vertical GRFs and greater plantar pressure peaks in the rearfoot, forefoot and hallux when the participants walked carrying a backpack at high gait cadences compared to walking at low gait cadences. Differences between loaded and unloaded conditions in both gait cadences were also observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca2+]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca2+]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca2+ in the extracellular fluid. The biphasic [Ca2+]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca2+]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.