18 resultados para waste plastics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article deals with a real-life waste collection routing problem. To efficiently plan waste collection, large municipalities may be partitioned into convenient sectors and only then can routing problems be solved in each sector. Three diverse situations are described, resulting in three different new models. In the first situation, there is a single point of waste disposal from where the vehicles depart and to where they return. The vehicle fleet comprises three types of collection vehicles. In the second, the garage does not match any of the points of disposal. The vehicle is unique and the points of disposal (landfills or transfer stations) may have limitations in terms of the number of visits per day. In the third situation, disposal points are multiple (they do not coincide with the garage), they are limited in the number of visits, and the fleet is composed of two types of vehicles. Computational results based not only on instances adapted from the literature but also on real cases are presented and analyzed. In particular, the results also show the effectiveness of combining sectorization and routing to solve waste collection problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For efficient planning of waste collection routing, large municipalities may be partitioned into convenient sectors. The real case under consideration is the municipality of Monção, in Portugal. Waste collection involves more than 1600 containers over an area of 220 km2 and a population of around 20,000 inhabitants. This is mostly a rural area where the population is distributed in small villages around the 33 boroughs centres (freguesia) that constitute the municipality. In most freguesias, waste collection is usually conducted 3 times a week. However, there are situations in which the same collection is done every day. The case reveals some general and specific characteristics which are not rare, but are not widely addressed in the literature. Furthermore, new methods and models to deal with sectorization and routing are introduced, which can be extended to other applications. Sectorization and routing are tackled following a three-phase approach. The first phase, which is the main concern of the presentation, introduces a new method for sectorization inspired by Electromagnetism and Coulomb’s Law. The matter is not only about territorial division, but also the frequency of waste collection, which is a critical issue in these types of applications. Special characteristics related to the number and type of deposition points were also a motivation for this work. The second phase addresses the routing problems in each sector: new Mixed Capacitated Arc Routing with Limited Multi-Landfills models will be presented. The last phase integrates Sectoring and Routing. Computational results confirm the effectiveness of the entire novel approach.