33 resultados para single-wire earth return (SWER)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an experimental study was performed on the influence of plug filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. The experimental programme includes repairs with different values of overlap length (LO=10, 20 and 30 mm), and with and without plug filling. The influence of the testing speed on the repairs strength is also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature, 50ºC and 80ºC. This will permit a comparative evaluation of the adhesive tested below and above the Glass Transition Temperature (Tg), established by the manufacturer at 67ºC. The global tendencies of the test results concerning the plug filling and overlap length analyses are interpreted from the fracture modes and typical stress distributions for bonded repairs. According to the results obtained from this work, design guidelines for repairing aluminium structures were recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded unions are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional fastening, riveting, bolting and welding techniques. Between the available bonding configurations, the single-lap joint is the most commonly used and studied by the scientific community due to its simplicity, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes in single-lap joints is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses at the damage initiation sites in structures or alterations of the failure mechanism emerging from local modifications. In this work, the effect of hole drilling at the overlap on the strength of single-lap joints was analyzed experimentally with two main purposes: (1) to check whether or not the anchorage effect of the adhesive within the holes is more preponderant than the stress concentrations near the holes, arising from the sharp edges, and modification of the joints straining behaviour (strength improvement or reduction, respectively) and (2) picturing a real scenario on which the components to be bonded are modified by some external factor (e.g. retrofitting of decaying/old-fashioned fastened unions). Tests were made with two adhesives (a brittle and a ductile one) varying the adherend thickness and the number, layout and diameter of the holes. Experimental testing showed that the joints strength never increases from the un-modified condition, showing a varying degree of weakening, depending on the selected adhesive and hole drilling configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the tensile strength of single-lap joints (SLJs) between similar and dissimilar adherends bonded with an acrylic adhesive was evaluated experimentally and numerically. The adherend materials included polyethylene (PE), polypropylene (PP), carbon-epoxy (CFRP), and glass-polyester (GFRP) composites. The following adherend combinations were tested: PE/PE, PE/PP, PE/CFRP, PE/GFRP, PP/PP, CFRP/CFRP, and GFRP/GFRP. One of the objectives of this work was to assess the influence of the adherends stiffness on the strength of the joints since it significantly affects the peel stresses magnitude in the adhesive layer. The experimental results were also used to validate a new mixed-mode cohesive damage model developed to simulate the adhesive layer. Thus, the experimental results were compared with numerical simulations performed in ABAQUS®, including a developed mixed-mode (I+II) cohesive damage model, based on the indirect use of fracture mechanics and implemented within interface finite elements. The cohesive laws present a trapezoidal shape with an increasing stress plateau, to reproduce the behaviour of the ductile adhesive used. A good agreement was found between the experimental and numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common techniques for stress analysis/strength prediction of adhesive joints involve analytical or numerical methods such as the Finite Element Method (FEM). However, the Boundary Element Method (BEM) is an alternative numerical technique that has been successfully applied for the solution of a wide variety of engineering problems. This work evaluates the applicability of the boundary elem ent code BEASY as a design tool to analyze adhesive joints. The linearity of peak shear and peel stresses with the applied displacement is studied and compared between BEASY and the analytical model of Frostig et al., considering a bonded single-lap joint under tensile loading. The BEM results are also compared with FEM in terms of stress distributions. To evaluate the mesh convergence of BEASY, the influence of the mesh refinement on peak shear and peel stress distributions is assessed. Joint stress predictions are carried out numerically in BEASY and ABAQUS®, and analytically by the models of Volkersen, Goland, and Reissner and Frostig et al. The failure loads for each model are compared with experimental results. The preparation, processing, and mesh creation times are compared for all models. BEASY results presented a good agreement with the conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single-lap joint is the most commonly used, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses or alterations of the failure mechanism emerging from local modifications. In this work, the effect of using different thickness adherends on the tensile strength of single-lap joints, bonded with a ductile and brittle adhesive, was numerically and experimentally evaluated. The joints were tested under tension for different combinations of adherend thickness. The effect of the adherends thickness mismatch on the stress distributions was also investigated by Finite Elements (FE), which explained the experimental results and the strength prediction of the joints. The numerical study was made by FE and Cohesive Zone Modelling (CZM), which allowed characterizing the entire fracture process. For this purpose, a FE analysis was performed in ABAQUS® considering geometric non-linearities. In the end, a detailed comparative evaluation of unbalanced joints, commonly used in engineering applications, is presented to give an understanding on how modifications in the bonded structures thickness can influence the joint performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded joints are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional methods. The single lap joint (SLJ) is the most commonly used method. The use of material or geometric changes in SLJ reduces peel and shear peak stresses at the damage initiation sites. In this work, the effect of adherend recessing at the overlap edges on the tensile strength of SLJ, bonded with a brittle adhesive, was experimentally and numerically studied. The recess dimensions (length and depth) were optimized for different values of overlap length (LO), thus allowing the maximization of the joint’s strength by the reduction of peak stresses at the overlap edges. The effect of recessing was also investigated by a finite element (FE) analysis and cohesive zone modelling (CZM), which allowed characterizing the entire fracture process and provided joint strength predictions. For this purpose, a static FE analysis was performed in ABAQUS1 considering geometric nonlinearities. In the end, the experimental and FE results revealed the accuracy of the FE analysis in predicting the strength and also provided some design principles for the strength improvement of SLJ using a relatively simple and straightforward technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium modified ruthenium electrocatalysts supported on carbon black were synthesized using NaBH4 reduction of the metal precursor. Prepared Ru/C electrocatalysts showed high dispersion and very small averaged particle size. These Ru/C electrocatalysts were subsequently modified with Se following two procedures: (a) preformed Ru/carbon catalyst was mixed with SeO2 in xylene and reduced in H2 and (b) Ru metal precursor was mixed with SeO2 followed by reduction with NaBH4. The XRD patterns indicate that a pyrite-type structure was obtained at higher annealing temperatures, regardless of the Ru:Se molar ratio used in the preparation step. A pyrite-type structure also emerged in samples that were not calcined; however, in this case, the pyrite-type structure was only prominent for samples with higher Ru:Se ratios. The characterization of the RuSe/C electrocatalysts suggested that the Se in noncalcined samples was present mainly as an amorphous skin. Preliminary study of activity toward oxygen reduction reaction (ORR) using electrocatalysts with a Ru:Se ratio of 1:0.7 indicated that annealing after modification with Se had a detrimental effect on their activity. This result could be related to the increased particle size of crystalline RuSe2 in heat-treated samples. Higher activity of not annealed RuSe/C catalysts could also be a result of the structure containing amorphous Se skin on the Ru crystal. The electrode obtained using not calcined RuSe showed a very promising performance with a slightly lower activity and higher overpotential in comparison with a commercial Pt/C electrode. Single wall carbon nanohorns (SWNH) were considered for application as ORR electrocatalysts' supports. The characterization of SWNH was carried out regarding their tolerance toward strong catalyzed corrosion conditions. Tests indicated that SWNH have a three times higher electrochemical surface area (ESA) loss than carbon black or Pt commercial electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystin-LR (MC-LR) is a dangerous toxin found in environmental waters, quantified by high performance liquid chromatography and/or enzyme-linked immunosorbent assays. Quick, low cost and on-site analysis is thus required to ensure human safety and wide screening programs. This work proposes label-free potentiometric sensors made of solid-contact electrodes coated with a surface imprinted polymer on the surface of Multi-Walled Carbon NanoTubes (CNTs) incorporated in a polyvinyl chloride membrane. The imprinting effect was checked by using non-imprinted materials. The MC-LR sensitive sensors were evaluated, characterized and applied successfully in spiked environmental waters. The presented method offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to examine the differences in standing balance between individuals with Parkinson's disease (PD) and subjects without PD (control group), under single and dual-task conditions. A cross-sectional study was designed using a non-probabilistic sample of 110 individuals (50 participants with PD and 60 controls) aged 50 years old and over. The individuals with PD were in the early or middle stages of the disease (characterized by Hoehn and Yahr as stages 1-3). The standing balance was assessed by measuring the centre of pressure (CoP) displacement in single-task (eyes-open/eyes-closed) and dual-task (while performing two different verbal fluency tasks). No significant differences were found between the groups regarding sociodemographic variables. In general, the standing balance of the individuals with PD was worse than the controls, as the CoP displacement across tasks was significantly higher for the individuals with PD (p<0.01), both in anteroposterior and mediolateral directions. Moreover, there were significant differences in the CoP displacement based parameters between the conditions, mainly between the eyes-open condition and the remaining conditions. However, there was no significant interaction found between group and condition, which suggests that changes in the CoP displacement between tasks were not influenced by having PD. In conclusion, this study shows that, although individuals with PD had a worse overall standing balance than individuals without the disease, the impact of performing an additional task on the CoP displacement is similar for both groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A criação de infraestruturas passa pela construção de estradas que ligam pontos estratégicos, permitindo acesso a bens e serviços, de forma cómoda e segura. No desenvolvimento deste trabalho é abordado o estudo e projeto de uma variante urbana no concelho de Cinfães, nas especificidades de traçado, pavimentos e sinalização. Inicia-se por uma apresentação sobre o trabalho, os objetivos, estrutura e metodologia utilizada na sua elaboração. São apresentados os softwares utilizados, como editores de imagem (Google Earth, Microsoft ICE e Caesium) que permitem obter e trabalhar imagens panorâmicas, o Civil 3D que possibilita a realização ágil de um projeto de vias, e o Alize-LCPC que determina as caraterísticas de dimensionamento de um pavimento flexível. São apresentados os estudos necessários para a construção da variante em questão passando pela localização da via, o trabalho sobre o levantamento topográfico fornecido pela Câmara Municipal, condicionantes de traçado e serviços afetados. Posteriormente, são abordados alguns conceitos teóricos como geometria do traçado, velocidade, tráfego e visibilidade. Descrevem-se as caraterísticas geométricas de infraestruturas rodoviárias a conhecer anteriormente à realização de um projeto de execução de uma via, como o traçado em planta (alinhamentos retos, curvas, raios, sobreelevação, sobrelargura), perfil longitudinal (trainéis, inclinações, concordâncias verticais) e perfil transversal (faixa de rodagem, bermas, valetas e taludes). É realizada ainda uma apresentação sobre os elementos integrantes de uma plataforma rodoviária e passeio, os seus critérios de dimensionamento, como caraterização do tráfego, temperaturas de serviço e deformações, assim como os elementos teóricos para o estudo de drenagem (período de retorno, precipitação e tipos de dispositivos). São ainda apresentadas as caraterísticas gerais de um projeto de sinalização e segurança, enunciando as marcas rodoviárias e a sinalização vertical. Termina-se apresentando as soluções encontradas e os meios utilizados, para a elaboração do projeto de uma via nova, alargamento de via existente e requalificação de pavimento de um troço de ligação à EN222, expondo ainda as conclusões obtidas na realização do projeto com propostas para desenvolvimento futuros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A utilização de juntas adesivas em aplicações industriais tem vindo a aumentar, em detrimento dos métodos tradicionais tais como a soldadura, brasagem e ligações aparafusadas e rebitadas. Este facto deve-se às vantagens que estas oferecem, como o facto de serem mais leves, comportarem-se bem sob cargas cíclicas ou de fadiga, a ligação de materiais diferentes e menores concentrações de tensões. Para aumentar a confiança no projeto de estruturas adesivas, é importante conseguir prever com precisão a sua resistência mecânica e respetivas propriedades de fratura (taxa crítica de libertação de energia de deformação à tração, GIC, e corte, GIIC). Estas propriedades estão diretamente relacionadas com a Mecânica da Fratura e são estimadas através de uma análise energética. Para este efeito, distinguem-se três tipos de modelos: modelos que necessitam da medição do comprimento de fenda durante a propagação do dano, modelos que utilizam um comprimento de fenda equivalente e métodos baseados no integral J. Como na maioria dos casos as solicitações ocorrem em modo misto (combinação de tração com corte), é de grande importância a perceção da fratura nesta condições, nomeadamente das taxas de libertação de energia relativamente a diferentes critérios ou envelopes de fratura. Esta comparação permite, por exemplo, averiguar qual o melhor critério energético de rotura a utilizar em modelos numéricos baseados em Modelos de Dano Coesivo. Neste trabalho é realizado um estudo experimental utilizando o ensaio Single-Leg Bending (SLB) em provetes colados com três tipos de adesivos, de forma a estudar e comparar as suas propriedades de fratura. Para tal, são aplicados alguns modelos de redução da taxa de libertação de energia de deformação à tração, GI, e corte, GII, enquadrados nos modelos que necessitam da medição do comprimento de fenda e nos modelos que utilizam um comprimento de fenda equivalente. Numa fase posterior, procedeu-se à análise e comparação dos resultados adquiridos durante a fase experimental de GI e GII de cada adesivo. A discussão de resultados foi também feita através da análise dos valores obtidos em diversos envelopes de fratura, no sentido de averiguar qual o critério de rotura mais adequado a considerar para cada adesivo. Foi obtida uma concordância bastante boa entre métodos de determinação de GI e GII, com exceção do adesivo mais dúctil, para o qual o método baseado no comprimento de fenda equivalente apresentou resultados ligeiramente superiores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integrity of multi-component structures is usually determined by their unions. Adhesive-bonding is often used over traditional methods because of the reduction of stress concentrations, reduced weight penalty, and easy manufacturing. Commercial adhesives range from strong and brittle (e.g., Araldite® AV138) to less strong and ductile (e.g., Araldite® 2015). A new family of polyurethane adhesives combines high strength and ductility (e.g., Sikaforce® 7888). In this work, the performance of the three above-mentioned adhesives was tested in single lap joints with varying values of overlap length (LO). The experimental work carried out is accompanied by a detailed numerical analysis by finite elements, either based on cohesive zone models (CZM) or the extended finite element method (XFEM). This procedure enabled detailing the performance of these predictive techniques applied to bonded joints. Moreover, it was possible to evaluate which family of adhesives is more suited for each joint geometry. CZM revealed to be highly accurate, except for largely ductile adhesives, although this could be circumvented with a different cohesive law. XFEM is not the most suited technique for mixed-mode damage growth, but a rough prediction was achieved.