57 resultados para penalty-based genetic algorithm
Resumo:
In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR) programs in addition to their physical assets to effectively manage the risks of market price and load variations. In this model, the DR scheduling is performed simultaneously with the dispatch of generation and storage units. The ultimate goal is to find the optimal values of the hourly financial incentives offered to the end-users. The proposed model considers the capacity obligations imposed on retailers by the grid operator. The profit seeking retailer also has the objective to minimize the peak demand to avoid the high capacity charges in form of grid tariffs or penalties. The non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the multi-objective problem. It is a fast and elitist multi-objective evolutionary algorithm. A case study is solved to illustrate the efficient performance of the proposed methodology. Simulation results show the effectiveness of the model for designing the incentive-based DR programs and indicate the efficiency of NSGA-II in solving the retailers’ multi-objective problem.
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
Resumo:
With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.
Resumo:
Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.
Resumo:
This paper proposes a swarm intelligence long-term hedging tool to support electricity producers in competitive electricity markets. This tool investigates the long-term hedging opportunities available to electric power producers through the use of contracts with physical (spot and forward) and financial (options) settlement. To find the optimal portfolio the producer risk preference is stated by a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance estimation and the expected return are based on a forecasted scenario interval determined by a long-term price range forecast model, developed by the authors, whose explanation is outside the scope of this paper. The proposed tool makes use of Particle Swarm Optimization (PSO) and its performance has been evaluated by comparing it with a Genetic Algorithm (GA) based approach. To validate the risk management tool a case study, using real price historical data for mainland Spanish market, is presented to demonstrate the effectiveness of the proposed methodology.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
Este trabalho, realizado no âmbito da unidade curricular de Tese/Dissertação, procura mostrar de que forma a Computação Evolucionária se pode aplicar no mundo da Música. Este é, de resto, um tema sobejamente aliciante dentro da área da Inteligência Artificial. Começa-se por apresentar o mundo da Música com uma perspetiva cronológica da sua história, dando especial relevo ao estilo musical do Fado de Coimbra. Abordam-se também os conceitos fundamentais da teoria musical. Relativamente à Computação Evolucionária, expõem-se os elementos associados aos Algoritmos Evolucionários e apresentam-se os principais modelos, nomeadamente os Algoritmos Genéticos. Ainda no âmbito da Computação Evolucionária, foi elaborado um pequeno estudo do “estado da arte” da aplicação da Computação Evolucionária na Música. A implementação prática deste trabalho baseia-se numa aplicação – AG Fado – que compõe melodias de Fado de Coimbra, utilizando Algoritmos Genéticos. O trabalho foi dividido em duas partes principais: a primeira parte consiste na recolha de informações e posterior levantamento de dados estatísticos sobre o género musical escolhido, nomeadamente fados em tonalidade maior e fados em tonalidade menor; a segunda parte consiste no desenvolvimento da aplicação, com a conceção do respetivo algoritmo genético para composição de melodias. As melodias obtidas através da aplicação desenvolvida são bastante audíveis e boas melodicamente. No entanto, destaca-se o facto de a avaliação ser efetuada por seres humanos o que implica sensibilidades musicais distintas levando a resultados igualmente distintos.
Resumo:
The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.
Resumo:
This paper addresses the problem of finding several different solutions with the same optimum performance in single objective real-world engineering problems. In this paper a parallel robot design is proposed. Thereby, this paper presents a genetic algorithm to optimize uni-objective problems with an infinite number of optimal solutions. The algorithm uses the maximin concept and ε-dominance to promote diversity over the admissible space. The performance of the proposed algorithm is analyzed with three well-known test functions and a function obtained from practical real-world engineering optimization problems. A spreading analysis is performed showing that the solutions drawn by the algorithm are well dispersed.
Resumo:
Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) agents interacting locally with their environment cause coherent functional global patterns to emerge. Particle swarm optimization (PSO) is a form of SI, and a population-based search algorithm that is initialized with a population of random solutions, called particles. These particles are flying through hyperspace and have two essential reasoning capabilities: their memory of their own best position and knowledge of the swarm's best position. In a PSO scheme each particle flies through the search space with a velocity that is adjusted dynamically according with its historical behavior. Therefore, the particles have a tendency to fly towards the best search area along the search process. This work proposes a PSO based algorithm for logic circuit synthesis. The results show the statistical characteristics of this algorithm with respect to number of generations required to achieve the solutions. It is also presented a comparison with other two Evolutionary Algorithms, namely Genetic and Memetic Algorithms.
Resumo:
Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.