78 resultados para market price of electricity
Resumo:
O processo de liberalização do setor elétrico em Portugal Continental seguiu uma metodologia idêntica à da maior parte dos países europeus, tendo a abertura de mercado sido efetuada de forma progressiva. Assim, no âmbito do acompanhamento do setor elétrico nacional, reveste-se de particular interesse caracterizar a evolução mais recente do mercado liberalizado, nomeadamente em relação ao preço da energia elétrica. A previsão do preço da energia elétrica é uma questão muito importante para todos os participantes do mercado de energia elétrica. Como se trata de um assunto de grande importância, a previsão do preço da energia elétrica tem sido alvo de diversos estudos e diversas metodologias têm sido propostas. Esta questão é abordada na presente dissertação recorrendo a técnicas de previsão, nomeadamente a métodos baseados no histórico da variável em estudo. As previsões são, segundo alguns especialistas, um dos inputs essenciais que os gestores desenvolvem para ajudar no processo de decisão. Virtualmente cada decisão relevante ao nível das operações depende de uma previsão. Para a realização do modelo de previsão de preço da energia elétrica foram utilizados os modelos Autorregressivos Integrados de Médias Móveis, Autoregressive / Integrated / Moving Average (ARIMA), que geram previsões através da informação contida na própria série temporal. Como se pretende avaliar a estrutura do preço da energia elétrica do mercado de energia, é importante identificar, deste conjunto de variáveis, quais as que estão mais relacionados com o preço. Neste sentido, é realizada em paralelo uma análise exploratória, através da correlação entre o preço da energia elétrica e outras variáveis de estudo, utilizando para esse efeito o coeficiente de correlação de Pearson. O coeficiente de correlação de Pearson é uma medida do grau e da direção de relação linear entre duas variáveis quantitativas. O modelo desenvolvido foi aplicado tendo por base o histórico de preço da eletricidade desde o inicio do mercado liberalizado e de modo a obter as previsões diária, mensal e anual do preço da eletricidade. A metodologia desenvolvida demonstrou ser eficiente na obtenção das soluções e ser suficientemente rápida para prever o valor do preço da energia elétrica em poucos segundos, servindo de apoio à decisão em ambiente de mercado.
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.
Resumo:
An auction model is used to increase the individual profits for market players with products they do not use. A Financial Transmission Rights Auction has the goal of trade transmission rights between Bidders and helps them raise their own profits. The ISO plays a major rule on keep the system in technical limits without interfere on the auctions offers. In some auction models the ISO decide want bids are implemented on the network, always with the objective maximize the individual profits for all bidders in the auction. This paper proposes a methodology for a Financial Transmission Rights Auction and an informatics application. The application receives offers from the purchase and sale side and considers bilateral contracts as Base Case. This goal is maximize the individual profits within the system in their technical limits. The paper includes a case study for the 30 bus IEEE test case.
Resumo:
This paper addresses the impact of the CO2 opportunity cost on the wholesale electricity price in the context of the Iberian electricity market (MIBEL), namely on the Portuguese system, for the period corresponding to the Phase II of the European Union Emission Trading Scheme (EU ETS). In the econometric analysis a vector error correction model (VECM) is specified to estimate both long–run equilibrium relations and short–run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The model is estimated using daily spot market prices and the four commodities prices are jointly modelled as endogenous variables. Moreover, a set of exogenous variables is incorporated in order to account for the electricity demand conditions (temperature) and the electricity generation mix (quantity of electricity traded according the technology used). The outcomes for the Portuguese electricity system suggest that the dynamic pass–through of carbon prices into electricity prices is strongly significant and a long–run elasticity was estimated (equilibrium relation) that is aligned with studies that have been conducted for other markets.
Resumo:
In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR) programs in addition to their physical assets to effectively manage the risks of market price and load variations. In this model, the DR scheduling is performed simultaneously with the dispatch of generation and storage units. The ultimate goal is to find the optimal values of the hourly financial incentives offered to the end-users. The proposed model considers the capacity obligations imposed on retailers by the grid operator. The profit seeking retailer also has the objective to minimize the peak demand to avoid the high capacity charges in form of grid tariffs or penalties. The non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the multi-objective problem. It is a fast and elitist multi-objective evolutionary algorithm. A case study is solved to illustrate the efficient performance of the proposed methodology. Simulation results show the effectiveness of the model for designing the incentive-based DR programs and indicate the efficiency of NSGA-II in solving the retailers’ multi-objective problem.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
Renewable based power generation has significantly increased over the last years. However, this process has evolved separately from electricity markets, leading to an inadequacy of the present market models to cope with huge quantities of renewable energy resources, and to take full advantage of the presently existing and the increasing envisaged renewable based and distributed energy resources. This paper proposes the modelling of electricity markets at several levels (continental, regional and micro), taking into account the specific characteristics of the players and resources involved in each level and ensuring that the proposed models accommodate adequate business models able to support the contribution of all the resources in the system, from the largest to the smaller ones. The proposed market models are integrated in MASCEM (Multi- Agent Simulator of Competitive Electricity Markets), using the multi agent approach advantages for overcoming the current inadequacy and significant limitations of the presently existing electricity market simulators to deal with the complex electricity market models that must be adopted.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
In context of electricity market, the transmission price is an important tool to an efficient development of the electricity system. The electricity market is influenced by several factors; however the transmission network management is one of the most important aspects, because the network is a natural monopoly. The transmission tariffs can help to regulate the market, for that reason evaluate tariff must have strict criterions. This paper explains several methodologies to tariff the use of transmission network by transmission network users. The methods presented are: Post-Stamp Method; MW-Mile Method; Distribution Factors Methods; Tracing Methodology; Bialek’s Tracing Method and Locational Marginal Price.
Resumo:
In the context of electricity markets, transmission pricing is an important tool to achieve an efficient operation of the electricity system. The electricity market is influenced by several factors; however the transmission network management is one of the most important aspects, because the network is a natural monopoly. The transmission tariffs can help to regulate the market, for this reason transmission tariffs must follow strict criteria. This paper presents the following methods to tariff the use of transmission networks by electricity market players: Post-Stamp Method; MW-Mile Method Distribution Factors Methods; Tracing Methodology; Bialek’s Tracing Method and Locational Marginal Price. A nine bus transmission network is used to illustrate the application of the tariff methods.
Resumo:
The energy sector in industrialized countries has been restructured in the last years, with the purpose of decreasing electricity prices through the increase in competition, and facilitating the integration of distributed energy resources. However, the restructuring process increased the complexity in market players' interactions and generated emerging problems and new issues to be addressed. In order to provide players with competitive advantage in the market, decision support tools that facilitate the study and understanding of these markets become extremely useful. In this context arises MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), a multi-agent based simulator that models real electricity markets. To reinforce MASCEM with the capability of recreating the electricity markets reality in the fullest possible extent, it is crucial to make it able to simulate as many market models and player types as possible. This paper presents a new negotiation model implemented in MASCEM based on the negotiation model used in day-ahead market (Elspot) of Nord Pool. This is a key module to study competitive electricity markets, as it presents well defined and distinct characteristics from the already implemented markets, and it is a reference electricity market in Europe (the one with the larger amount of traded power).
Resumo:
The European Union Emissions Trading Scheme (EU ETS) is a cornerstone of the European Union's policy to combat climate change and its key tool for reducing industrial greenhouse gas emissions cost-effectively. The purpose of the present work is to evaluate the influence of CO2 opportunity cost on the Spanish wholesale electricity price. Our sample includes all Phase II of the EU ETS and the first year of Phase III implementation, from January 2008 to December 2013. A vector error correction model (VECM) is applied to estimate not only long-run equilibrium relations, but also short-run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The four commodities prices are modeled as joint endogenous variables with air temperature and renewable energy as exogenous variables. We found a long-run relationship (cointegration) between electricity price, carbon price, and fuel prices. By estimating the dynamic pass-through of carbon price into electricity price for different periods of our sample, it is possible to observe the weakening of the link between carbon and electricity prices as a result from the collapse on CO2 prices, therefore compromising the efficacy of the system to reach proposed environmental goals. This conclusion is in line with the need to shape new policies within the framework of the EU ETS that prevent excessive low prices for carbon over extended periods of time.
Resumo:
Electricity markets worldwide are complex and dynamic environments with very particular characteristics. These are the result of electricity markets’ restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. The rising complexity and unpredictability in electricity markets has increased the need for the intervenient entities in foreseeing market behaviour. Market players and regulators are very interested in predicting the market’s behaviour. Market players need to understand the market behaviour and operation in order to maximize their profits, while market regulators need to test new rules and detect market inefficiencies before they are implemented. The growth of usage of simulation tools was driven by the need for understanding those mechanisms and how the involved players' interactions affect the markets' outcomes. Multi-agent based software is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. Several modelling tools directed to the study of restructured wholesale electricity markets have emerged. Still, they have a common limitation: the lack of interoperability between the various systems to allow the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. This dissertation proposes the development and implementation of ontologies for semantic interoperability between multi-agent simulation platforms in the scope of electricity markets. The added value provided to these platforms is given by enabling them sharing their knowledge and market models with other agent societies, which provides the means for an actual improvement in current electricity markets studies and development. The proposed ontologies are implemented in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) and tested through the interaction between MASCEM agents and agents from other multi-agent based simulators. The implementation of the proposed ontologies has also required a complete restructuring of MASCEM’s architecture and multi-agent model, which is also presented in this dissertation. The results achieved in the case studies allow identifying the advantages of the novel architecture of MASCEM, and most importantly, the added value of using the proposed ontologies. They facilitate the integration of independent multi-agent simulators, by providing a way for communications to be understood by heterogeneous agents from the various systems.
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs may turn electricity generation by renewable sources valuable in electricity markets. Information availability and adequate decision-support tools are crucial for achieving VPPs’ goals. This involves information concerning associated producers and market operation. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, focusing mainly in the information requirements for adequate decision making.
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. One of the most important tasks of a VPP is the conjugation of technologies to obtain a consistent set of associated producers and allow them to operate in the electric market. This paper presents some characteristics regarding already existent technologies and relevant aspects for producers and for VPP.