40 resultados para high copper amalgam
Resumo:
High risk of recurrence/progression bladder tumours is treated with Bacillus Calmette-Guérin (BCG) immunotherapy after complete resection of the tumour. Approximately 75% of these tumours express the uncommon carbohydrate antigen sialyl-Tn (Tn), a surrogate biomarker of tumour aggressiveness. Such changes in the glycosylation of cell-surface proteins influence tumour microenvironment and immune responses that may modulate treatment outcome and the course of disease. The aim of this work is to determine the efficiency of BCG immunotherapy against tumours expressing sTn and sTn-related antigen sialyl-6-T (s6T). METHODS: In a retrospective design, 94 tumours from patients treated with BCG were screened for sTn and s6T expression. In vitro studies were conducted to determine the interaction of BCG with high-grade bladder cancer cell line overexpressing sTn. RESULTS: From the 94 cases evaluated, 36 had recurrence after BCG treatment (38.3%). Treatment outcome was influenced by age over 65 years (HR=2.668; (1.344-5.254); P=0.005), maintenance schedule (HR=0.480; (0.246-0.936); P=0.031) and multifocality (HR=2.065; (1.033-4.126); P=0.040). sTn or s6T expression was associated with BCG response (P=0.024; P<0.0001) and with increased recurrence-free survival (P=0.001). Multivariate analyses showed that sTn and/or s6T were independent predictive markers of recurrence after BCG immunotherapy (HR=0.296; (0.148-0.594); P=0.001). In vitro studies demonstrated higher adhesion and internalisation of the bacillus to cells expressing sTn, promoting cell death. CONCLUSION: s6T is described for the first time in bladder tumours. Our data strongly suggest that BCG immunotherapy is efficient against sTn- and s6T-positive tumours. Furthermore, sTn and s6T expression are independent predictive markers of BCG treatment response and may be useful in the identification of patients who could benefit more from this immunotherapy.
Resumo:
The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.
Resumo:
In this work, we investigated structural, morphological, electrical, and optical properties from a set of Cu2ZnSnS4 thin films grown by sulfurization of metallic precursors deposited on soda lime glass substrates coated with or without molybdenum. X-ray diffraction and Raman spectroscopy measurements revealed the formation of single-phase Cu2ZnSnS4 thin films. A good crystallinity and grain compactness of the film was found by scanning electron microscopy. The grown films are poor in copper and rich in zinc, which is a composition close to that of the Cu2ZnSnS4 solar cells with best reported efficiency. Electrical conductivity and Hall effect measurements showed a high doping level and a strong compensation. The temperature dependence of the free hole concentration showed that the films are nondegenerate. Photoluminescence spectroscopy showed an asymmetric broadband emission. The experimental behavior with increasing excitation power or temperature cannot be explained by donor-acceptor pair transitions. A model of radiative recombination of an electron with a hole bound to an acceptor level, broadened by potential fluctuations of the valence-band edge, was proposed. An ionization energy for the acceptor level in the range 29–40 meV was estimated, and a value of 172 ±2 meV was obtained for the potential fluctuation in the valence-band edge.
Resumo:
A dc magnetron sputtering-based method to grow high-quality Cu2ZnSnS4 (CZTS) thin films, to be used as an absorber layer in solar cells, is being developed. This method combines dc sputtering of metallic precursors with sulfurization in S vapour and with post-growth KCN treatment for removal of possible undesired Cu2−xS phases. In this work, we report the results of a study of the effects of changing the precursors’ deposition order on the final CZTS films’ morphological and structural properties. The effect of KCN treatment on the optical properties was also analysed through diffuse reflectance measurements. Morphological, compositional and structural analyses of the various stages of the growth have been performed using stylus profilometry, SEM/EDS analysis, XRD and Raman Spectroscopy. Diffuse reflectance studies have been done in order to estimate the band gap energy of the CZTS films. We tested two different deposition orders for the copper precursor, namely Mo/Zn/Cu/Sn and Mo/Zn/Sn/Cu. The stylus profilometry analysis shows high average surface roughness in the ranges 300–550 nm and 230–250 nm before and after KCN treatment, respectively. All XRD spectra show preferential growth orientation along (1 1 2) at 28.45◦. Raman spectroscopy shows main peaks at 338 cm−1 and 287 cm−1 which are attributed to Cu2ZnSnS4. These measurements also confirm the effectiveness of KCN treatment in removing Cu2−xS phases. From the analysis of the diffuse reflectance measurements the band gap energy for both precursors’ sequences is estimated to be close to 1.43 eV. The KCN-treated films show a better defined absorption edge; however, the band gap values are not significantly affected. Hot point probe measurements confirmed that CZTS had p-type semiconductor behaviour and C–V analysis was used to estimate the majority carrier density giving a value of 3.3 × 1018 cm−3.
Resumo:
Copper zinc tin sulfide (CZTS) is a promising Earthabundant thin-film solar cell material; it has an appropriate band gap of ~1.45 eV and a high absorption coefficient. The most efficient CZTS cells tend to be slightly Zn-rich and Cu-poor. However, growing Zn-rich CZTS films can sometimes result in phase decomposition of CZTS into ZnS and Cu2SnS3, which is generally deleterious to solar cell performance. Cubic ZnS is difficult to detect by XRD, due to a similar diffraction pattern. We hypothesize that synchrotron-based extended X-ray absorption fine structure (EXAFS), which is sensitive to local chemical environment, may be able to determine the quantity of ZnS phase in CZTS films by detecting differences in the second-nearest neighbor shell of the Zn atoms. Films of varying stoichiometries, from Zn-rich to Cu-rich (Zn-poor) were examined using the EXAFS technique. Differences in the spectra as a function of Cu/Zn ratio are detected. Linear combination analysis suggests increasing ZnS signal as the CZTS films become more Zn-rich. We demonstrate that the sensitive technique of EXAFS could be used to quantify the amount of ZnS present and provide a guide to crystal growth of highly phase pure films.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
This paper summarises the most important solutions that have emerged from the work carried out by our team within the framework of the EU (IST-1999-11316) project RFieldbus - High Performance Wireless Fieldbus in Industrial Multimedia-Related Environment. Within this project, Profibus was chosen as the fieldbus platform. Essentially, extensions to the current Profibus standard are being developed in order to provide Profibus with wireless, mobility and industrialmultimedia capabilities. In fact, providing these extensions means fulfilling strong requirements, namely to encompass the communication between wired (currently available) and wireless/mobile devices and to support real-time control traffic and multimedia traffic in the same network.
Resumo:
Known algorithms capable of scheduling implicit-deadline sporadic tasks over identical processors at up to 100% utilisation invariably involve numerous preemptions and migrations. To the challenge of devising a scheduling scheme with as few preemptions and migrations as possible, for a given guaranteed utilisation bound, we respond with the algorithm NPS-F. It is configurable with a parameter, trading off guaranteed schedulable utilisation (up to 100%) vs preemptions. For any possible configuration, NPS-F introduces fewer preemptions than any other known algorithm matching its utilisation bound. A clustered variant of the algorithm, for systems made of multicore chips, eliminates (costly) off-chip task migrations, by dividing processors into disjoint clusters, formed by cores on the same chip (with the cluster size being a parameter). Clusters are independently scheduled (each, using non-clustered NPS-F). The utilisation bound is only moderately affected. We also formulate an important extension (applicable to both clustered and non-clustered NPS-F) which optimises the supply of processing time to executing tasks and makes it more granular. This reduces processing capacity requirements for schedulability without increasing preemptions.
Resumo:
The performance of the Weather Research and Forecast (WRF) model in wind simulation was evaluated under different numerical and physical options for an area of Portugal, located in complex terrain and characterized by its significant wind energy resource. The grid nudging and integration time of the simulations were the tested numerical options. Since the goal is to simulate the near-surface wind, the physical parameterization schemes regarding the boundary layer were the ones under evaluation. Also, the influences of the local terrain complexity and simulation domain resolution on the model results were also studied. Data from three wind measuring stations located within the chosen area were compared with the model results, in terms of Root Mean Square Error, Standard Deviation Error and Bias. Wind speed histograms, occurrences and energy wind roses were also used for model evaluation. Globally, the model accurately reproduced the local wind regime, despite a significant underestimation of the wind speed. The wind direction is reasonably simulated by the model especially in wind regimes where there is a clear dominant sector, but in the presence of low wind speeds the characterization of the wind direction (observed and simulated) is very subjective and led to higher deviations between simulations and observations. Within the tested options, results show that the use of grid nudging in simulations that should not exceed an integration time of 2 days is the best numerical configuration, and the parameterization set composed by the physical schemes MM5–Yonsei University–Noah are the most suitable for this site. Results were poorer in sites with higher terrain complexity, mainly due to limitations of the terrain data supplied to the model. The increase of the simulation domain resolution alone is not enough to significantly improve the model performance. Results suggest that error minimization in the wind simulation can be achieved by testing and choosing a suitable numerical and physical configuration for the region of interest together with the use of high resolution terrain data, if available.
Resumo:
In this study, an experimental investigation into the shear strength behaviour of aluminium alloy single-lap adhesive joints was carried out in order to understand the effect of temperature on the strength of adhesively bonding joints. Single lap joints (SLJs) were fabricated and tested at RT and high temperatures (100ºC, 125ºC, 150ºC, 175ºC and 200ºC). Results showed that the failure loads of the single-lap joint test specimens vary with temperature and this needs to be considered in any design procedure. It is shown that, although the tensile stress decreased with temperature, the lap-shear strength of the adhesive increased with increasing of temperature up to the glass transition of the adhesive (Tg) and decreased for tests above the Tg.
Resumo:
Si3N4 tools were coated with a thin diamond film using a Hot-Filament Chemical Vapour Deposition (HFCVD) reactor, in order to machining a grey cast iron. Wear behaviour of these tools in high speed machining was the main subject of this work. Turning tests were performed with a combination of cutting speeds of 500, 700 and 900 m min−1, and feed rates of 0.1, 0.25 and 0.4 mm rot−1, remaining constant the depth of cut of 1 mm. In order to evaluate the tool behaviour during the turning tests, cutting forces were analyzed being verified a significant increase with feed rate. Diamond film removal occurred for the most severe set of cutting parameters. It was also observed the adhesion of iron and manganese from the workpiece to the tool. Tests were performed on a CNC lathe provided with a 3-axis dynamometer. Results were collected and registered by homemade software. Tool wear analysis was achieved by a Scanning Electron Microscope (SEM) provided with an X-ray Energy Dispersive Spectroscopy (EDS) system. Surface analysis was performed by a profilometer.
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.
Resumo:
An integrated chemical-biological effects monitoring was performed in 2010 and 2012 in two NW Iberian estuaries under different anthropogenic pressure. One is low impacted and the other is contaminated by metals. The aim was to verify the usefulness of a multibiomarker approach, using Carcinus maenas as bioindicator species, to reflect diminishing environmental contamination and improved health status under abiotic variation. Sampling sites were assessed for metal levels in sediments and C. maenas, water abiotic factors and biomarkers (neurotoxicity, energy metabolism, biotransformation, anti-oxidant defences, oxidative damage). High inter-annual and seasonal abiotic variation was observed. Metal levels in sediments and crab tissues were markedly higher in 2010 than in 2012 in the contaminated estuary. Biomarkers indicated differences between the study sites and seasons and an improvement of effects measured in C. maenas from the polluted estuary in 2012. Integrated Biomarker Response (IBR) index depicted sites with higher stress levels whereas Principal Component Analysis (PCA) showed associations between biomarker responses and environmental variables. The multibiomarker approach and integrated assessments proved to be useful to the early diagnosis of remediation measures in impacted sites.
Resumo:
Fresh-cut vegetables are a successful convenient healthy food. Nowadays, the presence of new varieties of minimally processed vegetables in the market is common in response to the consumers demand for new flavours and high quality products. Within the most recent fresh-cut products are the aromatic herbs. In this work, the objective was to evaluate the nutritional quality and stability of four fresh-cut aromatic herbs. Several physicochemical quality characteristics (colour, pH, total soluble solids, and total titratable acidity) were monitored in fresh-cut chives, coriander, spearmint and parsley leaves, stored under refrigeration (3 ± 1 ºC) during 10 days. Their nutritional composition was determined, including mineral composition (phosphorous, potassium, sodium, calcium, magnesium, iron, zinc, manganese and copper) and fat- and water-soluble vitamin contents. Total soluble phenolics, flavonoids and the antioxidant capacity were determined by spectrophotometric methods. The aromatic herbs kept their fresh appearance during the storage, maintaining their colour throughout shelf-life. Their macronutrient composition and mineral content were stable during storage. Coriander had the highest mineral and fatsoluble vitamin content, while spearmint showed the best scores in the phenolic, flavonoid and antioxidant capacity assays. Vitamins and antioxidant capacity showed some variation during storage, with a differential behaviour of each compound according to the sample.