28 resultados para generalized confluent hypergeometric function
Resumo:
This paper studies the describing function (DF) of systems constituted by a mass subjected to nonlinear friction. The friction force is decomposed into two components, namely, the viscous and the Coulomb friction. The system dynamics is analyzed in the DF perspective revealing a fractional-order behavior. The reliability of the DF method is evaluated through the signal harmonic contents.
Resumo:
Depression, the most prevalent psychiatric disorder, has a lifelong risk of 20% and is related to high rates of death among the patients. Thus, this study aims to conduct a systematic review of changes in executive functions of adult patients diagnosed with depression. We found 1381 articles; however, only 28 were selected and recovered. The inclusion criteria was the assessment of executive functions with at least one neuropsychological test, and articles that evaluated primarily adult individuals with depression, without comparison to other psychiatric disorders. Although most of the studies (25 out of 28 analyzed) have shown deficits in some executive subcomponents, these findings are not conclusive because they used different parameters of assessment. Moreover, many variables were not controlled, such as the different subtypes of the disorder, the high level of severity, comorbidity and the use of drugs. Most studies showed different deficits in executive functions in depressed patients, but further longitudinal studies are needed in order to confirm these findings.
Resumo:
Recently simple limiting functions establishing upper and lower bounds on the Mittag-Leffler function were found. This paper follows those expressions to design an efficient algorithm for the approximate calculation of expressions usual in fractional-order control systems. The numerical experiments demonstrate the superior efficiency of the proposed method.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
Recently simple limiting functions establishing upper and lower bounds on the Mittag-Leffler function were found. This paper follows those expressions to design an efficient algorithm for the approximate calculation of expressions usual in fractional-order control systems. The numerical experiments demonstrate the superior efficiency of the proposed method.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.
Resumo:
This paper analyses the dynamical properties of systems with backlash and impact phenomena based on the describing function method. The dynamics is illustrated using the Nyquist and Bode plots and the results are compared with those of standard models.
Resumo:
The paper revisits the convolution operator and addresses its generalization in the perspective of fractional calculus. Two examples demonstrate the feasibility of the concept using analytical expressions and the inverse Fourier transform, for real and complex orders. Two approximate calculation schemes in the time domain are also tested.
Resumo:
Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.