28 resultados para generalized binary group
Resumo:
Secure group communication is a paradigm that primarily designates one-to-many communication security. The proposed works relevant to secure group communication have predominantly considered the whole network as being a single group managed by a central powerful node capable of supporting heavy communication, computation and storage cost. However, a typical Wireless Sensor Network (WSN) may contain several groups, and each one is maintained by a sensor node (the group controller) with constrained resources. Moreover, the previously proposed schemes require a multicast routing support to deliver the rekeying messages. Nevertheless, multicast routing can incur heavy storage and communication overheads in the case of a wireless sensor network. Due to these two major limitations, we have reckoned it necessary to propose a new secure group communication with a lightweight rekeying process. Our proposal overcomes the two limitations mentioned above, and can be applied to a homogeneous WSN with resource-constrained nodes with no need for a multicast routing support. Actually, the analysis and simulation results have clearly demonstrated that our scheme outperforms the previous well-known solutions.
Resumo:
Securing group communication in wireless sensor networks has recently been extensively investigated. Many works have addressed this issue, and they have considered the grouping concept differently. In this paper, we consider a group as being a set of nodes sensing the same data type, and we alternatively propose an efficient secure group communication scheme guaranteeing secure group management and secure group key distribution. The proposed scheme (RiSeG) is based on a logical ring architecture, which permits to alleviate the group controller’s task in updating the group key. The proposed scheme also provides backward and forward secrecy, addresses the node compromise attack, and gives a solution to detect and eliminate the compromised nodes. The security analysis and performance evaluation show that the proposed scheme is secure, highly efficient, and lightweight. A comparison with the logical key hierarchy is preformed to prove the rekeying process efficiency of RiSeG. Finally, we present the implementation details of RiSeG on top of TelosB sensor nodes to demonstrate its feasibility.
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface does typically contain information about the amount of computing capacity needed by the application. In multiprocessor platforms, the interface should also present information about the degree of parallelism. Recently there have been quite a few interface proposals. However, they are either too complex to be handled or too pessimistic.In this paper we propose the Generalized Multiprocessor Periodic Resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We describe a method to generate the interface from the application specification. All these methods have been implemented in Matlab routines that are publicly available.
Resumo:
A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
Resumo:
Graphics processor units (GPUs) today can be used for computations that go beyond graphics and such use can attain a performance that is orders of magnitude greater than a normal processor. The software executing on a graphics processor is composed of a set of (often thousands of) threads which operate on different parts of the data and thereby jointly compute a result which is delivered to another thread executing on the main processor. Hence the response time of a thread executing on the main processor is dependent on the finishing time of the execution of threads executing on the GPU. Therefore, we present a simple method for calculating an upper bound on the finishing time of threads executing on a GPU, in particular NVIDIA Fermi. Developing such a method is nontrivial because threads executing on a GPU share hardware resources at very fine granularity.
Resumo:
WiDom is a wireless prioritized medium access control (MAC) protocol which offers a very large number of priority levels. Hence, it brings the potential for employing non-preemptive static-priority scheduling and schedulability analysis for a wireless channel assuming that the overhead of WiDom is modeled properly. One schedulability analysis for WiDom has already been proposed but recent research has created a new version of WiDom with lower overhead (we call it: WiDom with a master node) and for this version of WiDom no schedulability analysis exists. Also, common to the previously proposed schedulability analyses for WiDom is that they cannot analyze message streams with release jitter. Therefore, in this paper we propose a new schedulability analysis for WiDom (with a master node). We also extend the WiDom analyses (with and without master node) to work also for message streams with release jitter.
Resumo:
This paper addresses the calculation of fractional order expressions through rational fractions. The article starts by analyzing the techniques adopted in the continuous to discrete time conversion. The problem is re-evaluated in an optimization perspective by tacking advantage of the degree of freedom provided by the generalized mean formula. The results demonstrate the superior performance of the new algorithm.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
The main objective of this work is to report on the development of a multi-criteria methodology to support the assessment and selection of an Information System (IS) framework in a business context. The objective is to select a technological partner that provides the engine to be the basis for the development of a customized application for shrinkage reduction on the supply chains management. Furthermore, the proposed methodology di ers from most of the ones previously proposed in the sense that 1) it provides the decision makers with a set of pre-defined criteria along with their description and suggestions on how to measure them and 2)it uses a continuous scale with two reference levels and thus no normalization of the valuations is required. The methodology here proposed is has been designed to be easy to understand and use, without a specific support of a decision making analyst.
Resumo:
The aim is to examine the temporal trends of hip fracture incidence in Portugal by sex and age groups, and explore the relation with anti-osteoporotic medication. From the National Hospital Discharge Database, we selected from 1st January 2000 to 31st December 2008, 77,083 hospital admissions (77.4% women) caused by osteoporotic hip fractures (low energy, patients over 49 years-age), with diagnosis codes 820.x of ICD 9-CM. The 2001 Portuguese population was used as standard to calculate direct age-standardized incidence rates (ASIR) (100,000 inhabitants). Generalized additive and linear models were used to evaluate and quantify temporal trends of age specific rates (AR), by sex. We identified 2003 as a turning point in the trend of ASIR of hip fractures in women. After 2003, the ASIR in women decreased on average by 10.3 cases/100,000 inhabitants, 95% CI (− 15.7 to − 4.8), per 100,000 anti-osteoporotic medication packages sold. For women aged 65–69 and 75–79 we identified the same turning point. However, for women aged over 80, the year 2004 marked a change in the trend, from an increase to a decrease. Among the population aged 70–74 a linear decrease of incidence rate (95% CI) was observed in both sexes, higher for women: − 28.0% (− 36.2 to − 19.5) change vs − 18.8%, (− 32.6 to − 2.3). The abrupt turning point in the trend of ASIR of hip fractures in women is compatible with an intervention, such as a medication. The trends were different according to gender and age group, but compatible with the pattern of bisphosphonates sales.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.
Resumo:
The paper revisits the convolution operator and addresses its generalization in the perspective of fractional calculus. Two examples demonstrate the feasibility of the concept using analytical expressions and the inverse Fourier transform, for real and complex orders. Two approximate calculation schemes in the time domain are also tested.