18 resultados para food skills
Resumo:
A novel electrochemical sensor for ochratoxin A (OTA) detection was fabricated through the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and a molecularly imprinted polymer (MIP). The MWCNTs dramatically promoted the sensitivity of the developed sensor, while polypyrrole (PPy) imprinted with OTA served as the selective recognition element. The imprinted PPy film was prepared by electropolymerization of pyrrole in the presence of OTA as a template molecule via cyclic voltammetry (CV). The electrochemical oxidation of OTA at the developed sensor was investigated by CV and differential pulse voltammetry (DPV). The developed MIP/MWCNT/GCE sensor showed a linear relationship, when using DPV, between peak current intensity and OTA concentration in the range between 0.050 and 1.0 μM, with limits of detection (LOD) and quantification of 0.0041 μM (1.7 μg/L) and 0.014 μM (5.7 μg/L) respectively. With the developed sensor precise results were obtained; relative standard deviations of 4.2% and 7.5% in the evaluation of the repeatability and reproducibility, respectively. The MIP/MWCNT/GCE sensor is simple to fabricate and easy to use and was successfully applied to the determination of OTA in spiked beer and wine samples, with recoveries between 84 and 104%, without the need of a sample pre-treatment step.
Resumo:
Background Over the years, food industry wastes have been the focus of a growing interest due to their content in high added-value compounds. A good example are the olive oil by-products (OOBP), which retain a great amount of phenolic compounds during olive oil production. Their structure and biological properties justify their potential use as antioxidants in other food products. The efficient recovery of phenolic compounds has been extensively studied and optimized in order to maximize their reintroduction in the food chain and contribute to a higher valorization and better management of wastes from olive oil industry. Scope and approach This paper reviews the most representative phenolic compounds described in OOBP and their biological properties. New extraction procedures to efficiently recover these compounds and the most advanced chromatographic techniques that have been used for a better understanding of the phenolic profile of these complex matrices are also referred. Finally, this paper reports the main applications of OOBP, with emphasis on their phenolic content as natural antioxidants for food applications. Key findings and conclusions Besides their antioxidant activity, phenolic compounds from OOBP have also shown antimicrobial and antitumoral properties. Their application as food antioxidants requires new extraction techniques, including the use of non-toxic solvents and, in a pilot scale, the use of filters and adsorbent resins. The inclusion of phenolic compounds from OOBP in some food matrices have improved not only their antioxidant capacity but also their sensory attributes.
Resumo:
The goal of this project, one of the proposals of the EPS@ISEP Spring 2014, was to develop an Aquaponics System. Over recent years Aquaponics systems have received increased attention since they contribute to reduce the strain on resources within 1st and 3rd world countries. Aquaponics is the combination of Hydroponics and Aquaculture, mimicking a natural environment in order to successfully apply and enhance the understanding of natural cycles within an indoor process. Using this knowledge of natural cycles, it was possible to create a system with capabilities similar to that of a natural environment with the support of electronics, enhancing the overall efficiency of the system. The multinational team involved in the development of this system was composed of five students from five countries and fields of study. This paper describes their solution, including the overall design, the technology involved and the benefits it can bring to the current market. The team was able to design and render the Computer Aided Design (CAD) drawings of the prototype, assemble all components, successfully test the electronics and comply with the budget. Furthermore, the designed solution was supported by a product sustainability study and included a specific marketing plan. Last but not least, the students enrolled in this project obtained new multidisciplinary knowledge and increased their team work and cross-cultural communication skills.