23 resultados para fixed regression
Resumo:
27th Euromicro Conference on Real-Time Systems (ECRTS 2015), Lund, Sweden.
Resumo:
In this work a forest fire detection solution using small autonomous aerial vehicles is proposed. The FALCOS unmanned aerial vehicle developed for remote-monitoring purposes is described. This is a small size UAV with onboard vision processing and autonomous flight capabilities. A set of custom developed navigation sensors was developed for the vehicle. Fire detection is performed through the use of low cost digital cameras and near-infrared sensors. Test results for navigation and ignition detection in real scenario are presented.
Resumo:
In the present paper we consider a differentiated Stackelberg model, when the leader firm engages in an R&D process that gives an endogenous cost-reducing innovation. The aim is to study the licensing of the cost-reduction by a per-unit royalty and a fixed-fee. We analyse the implications of these types of licensing contracts over the R&D effort, the profits of the firms, the consumer surplus and the social welfare. By using comparative static analysis, we conclude that the degree of the differentiation of the goods plays an important role in the results.
Resumo:
Demo presented in 12th Workshop on Models and Algorithms for Planning and Scheduling Problems (MAPSP 2015). 8 to 12, Jun, 2015. La Roche-en-Ardenne, Belgium. Extended abstract.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.
Resumo:
O estudo analisa o impacto da gestão de Fundo de maneio na rendibilidade de algumas empresas Portuguesas no sector da cortiça, sendo a amostra final constituída por 354 empresas no período de 2007 a 2013. O contributo para a literatura existente relaciona-se com a falta de estudos sobre o tema da relação entre a gestão de Fundo de Maneio e a rendibilidade das empresas do sector da cortiça. A relação entre a eficiência da gestão de Fundo de Maneio e a rendibilidade das empresas foi analisada usando dados em painel e a metodologia utilizada consistiu na análise de regressão utilizando o Modelo de Efeitos fixos. De entre os resultados obtidos, constatamos que os gestores podem aumentar a rendibilidade das empresas, reduzindo o prazo médio de existências e alargando o prazo médio de pagamentos. Não foi possível provar a existência de relação entre a duração do net trade cycle ou do prazo médio de recebimentos e a rendibilidade das empresas. Por outro lado, o grau de alavancagem operacional apresenta um efeito positivo sobre a rendibilidade da empresa.