55 resultados para energy efficient design
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.
Impact of design options in zero energy building conception: the case of large buildings in Portugal
Resumo:
The new recast of Directive 2010/31/EU in order to implement the new concept NZEB in new buildings, is to be fully respected by all Member States, and is revealed as important measure to promote the reduction of energy consumption of buildings and encouraging the use of renewable energy. In this study, it was tested the applicability of the nearly zero energy building concept to a big size office building and its impact after a 50-years life cycle span.
Resumo:
Coarse Grained Reconfigurable Architectures (CGRAs) are emerging as enabling platforms to meet the high performance demanded by modern applications (e.g. 4G, CDMA, etc.). Recently proposed CGRAs offer time-multiplexing and dynamic applications parallelism to enhance device utilization and reduce energy consumption at the cost of additional memory (up to 50% area of the overall platform). To reduce the memory overheads, novel CGRAs employ either statistical compression, intermediate compact representation, or multicasting. Each compaction technique has different properties (i.e. compression ratio, decompression time and decompression energy) and is best suited for a particular class of applications. However, existing research only deals with these methods separately. Moreover, they only analyze the compaction ratio and do not evaluate the associated energy overheads. To tackle these issues, we propose a polymorphic compression architecture that interleaves these techniques in a unique platform. The proposed architecture allows each application to take advantage of a separate compression/decompression hierarchy (consisting of various types and implementations of hardware/software decoders) tailored to its needs. Simulation results, using different applications (FFT, Matrix multiplication, and WLAN), reveal that the choice of compression hierarchy has a significant impact on compression ratio (up to 52%), decompression energy (up to 4 orders of magnitude), and configuration time (from 33 n to 1.5 s) for the tested applications. Synthesis results reveal that introducing adaptivity incurs negligible additional overheads (1%) compared to the overall platform area.
Resumo:
Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
Designing electric installation projects, demands not only academic knowledge, but also other types of knowledge not easily acquired through traditional instructional methodologies. A lot of additional empirical knowledge is missing and so the academic instruction must be completed with different kinds of knowledge, such as real-life practical examples and simulations. On the other hand, the practical knowledge detained by the most experienced designers is not formalized in such a way that is easily transmitted. In order to overcome these difficulties present in the engineers formation, we are developing an Intelligent Tutoring System (ITS), for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students.
Resumo:
This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.
Resumo:
In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
This paper presents work in progress, to develop an efficient and economic way to directly produce Technetium 99metastable (99mTc) using low-energy cyclotrons. Its importance is well established and relates with the increased global trouble in delivering 99mTc to Nuclear Medicine Departments relying on this radioisotope. Since the present delivery strategy has clearly demonstrated its intrinsic limits, our group decided to follow a distinct approach that uses the broad distribution of the low energy cyclotrons and the accessibility of Molybdenum 100 (100Mo) as the Target material. This is indeed an important issue to consider, since the system here presented, named CYCLOTECH, it is not based on the use of Highly Enriched (or even Low Enriched) Uranium 235 (235U), so entirely complying with the actual international trends and directives concerning the use of this potential highly critical material. The production technique is based on the nuclear reaction 100Mo (p,2n) 99mTc whose production yields have already been documented. Until this moment two Patent requests have already been submitted (the first at the INPI, in Portugal, and the second at the USPTO, in the USA); others are being prepared for submission on a near future. The object of the CYCLOTECH system is to present 99mTc to Nuclear Medicine radiopharmacists in a routine, reliable and efficient manner that, remaining always flexible, entirely blends with established protocols. To facilitate workflow and Radiation Protection measures, it has been developed a Target Station that can be installed on most of the existing PET cyclotrons and that will tolerate up to 400 μA of beam by allowing the beam to strike the Target material at an adequately oblique angle. The Target Station permits the remote and automatic loading and discharge of the Targets from a carriage of 10 Target bodies. On other hand, several methods of Target material deposition and Target substrates are presented. The object was to create a cost effective means of depositing and intermediate the target material thickness (25 - 100μm) with a minimum of loss on a substrate that is able to easily transport the heat associated with high beam currents. Finally, the separation techniques presented are a combination of both physical and column chemistry. The object was to extract and deliver 99mTc in the identical form now in use in radiopharmacies worldwide. In addition, the Target material is recovered and can be recycled.
Resumo:
The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.
Resumo:
A cada instante surgem novas soluções de aprendizagem, resultado da evolução tecnológica constante com que nos deparamos. Estas inovações potenciam uma transmissão do conhecimento entre o educador e o educando cada vez mais simplificada, rápida e eficiente. Alguns destes avanços têm em vista a centralização no aluno, através da delegação de tarefas e da disponibilização de conteúdos, investindo na autonomia e na auto-aprendizagem, de modo a que cada aluno crie o seu próprio método de estudo, e evolua gradualmente, com o acompanhamento de um professor ou sistema autónomo de aprendizagem. Com esta investigação, é pretendido fazer um estudo dos métodos de aprendizagem ao longo do tempo até à actualidade, enumerando algumas das ferramentas utilizadas no processo de aprendizagem, indicando os vários benefícios, bem como contrapartidas do uso das mesmas. Será também analisado um caso de estudo baseado numa destas ferramentas, descrevendo o seu funcionamento e modo de interacção entre as várias entidades participantes, apresentando os resultados obtidos. O caso de estudo consistirá na criação de um cenário específico de aprendizagem, na área da saúde, analisando-o em diferentes contextos, e evidenciando as características e benefícios de cada ambiente analisado, no processo aprendizagem. Será então demonstrado como é possível optimizar os processos de aprendizagem, utilizando ferramentas de informatização e automatização desses mesmos processos, de forma tornar o processo de ensino mais célere e eficaz, num ambiente controlável, e com as funcionalidades que a tecnologia actual permite.
Resumo:
A Mundotêxtil foi fundada em 1975 tendo iniciado a sua actividade na área comercial de produtos têxteis. Actualmente é o maior produtor nacional de atoalhados de felpo e emprega 575 colaboradores. Como resultado do seu crescimento e sobretudo da actividade de tingimento de fio e felpo, as necessidades de água são consideráveis e o volume de efluentes gerados nos processos industriais é cada vez maior a empresa avançou com a construção de uma estação de tratamento por lamas activadas, colocando-a em funcionamento em Setembro de 2004. Inicialmente surgiram dificuldades para a remoção da cor e da concentração da Carência Química de Oxigénio (CQO) de modo a cumprir os limites máximos de emissão permitidos nas normas de descarga no rio Ave e no Decreto-Lei nº 236/98, de 1 de Agosto. Com a descarga de parte dos efluentes no SIDVA e a utilização de um coagulante adicionado ao reactor o tratamento passou a apresentar melhores resultados. O intuito deste trabalho é o de apresentar soluções de modo a optimizar o funcionamento do tratamento biológico da Mundotêxtil. A optimização pode começar na concepção dos produtos, pode incidir no processo de fabrico para além de poder ser efectuada no seio da estação de tratamento biológico. Foi efectuado um estudo do tratamento biológico por lamas activadas no Laboratório de Tecnologia Química Profª Doutora Lída de Vasconcelos, laboratório tecnológico do Instituto Superior de Engenharia do Porto (ISEP) que decorreu nos meses de Maio, Junho e Julho de 2010. O estudo laboratorial foi efectuado para três situações distintas: 1) tratamento do efluente bruto sem qualquer tipo de pré-tratamento (ensaios 1 a 3); 2) tratamento do efluente bruto submetido a pré-tratamento com coagulante Ambifloc BIO MD (ensaios 4 e 5) e 3) tratamento com adição de fungos ao tanque de arejamento (ensaio 6). Foram utilizadas duas instalações de tratamento alimentadas a partir do mesmo tanque de alimentação. Os dois sistemas eram idênticos, diferiram nos caudais de alimentação de efluente que foram alterados ao longo do estudo. O efluente a tratar foi fornecido pela empresa Mundotêxtil, sendo recolhido por diversas vezes ao longo dos ensaios. Este efluente foi retirado após o pré-tratamento da empresa, ou seja este efluente é o mesmo que alimenta o tratamento biológico da Mundotêxtil. Devido a este facto o efluente usado no estudo laboratorial teve uma variabilidade no período em que decorreu o estudo, nomeadamente em termos de concentração de CQO e cor. A relação entre a Carência Bioquímica (CBO5) e a CQO situouse entre 0,47 e 0,63 o que traduz que está dentro dos valores típicos para um efluente têxtil. Os melhores resultados globais de remoção de CQO foram obtidos no ensaio 5 e estiveram compreendidos entre 73,2% e 77,5% para o ensaio 5.1 e entre 62,9 e 73,2% para o ensaio 5.2. Neste ensaio foi utilizado o coagulante. Todos os valores de concentração de CQO obtidos nos efluentes dos decantadores para os ensaios 2, 5 e 6 são inferiores aos valores limite de descarga definidos nas normas de descarga no rio Ave e o Decreto-Lei 236/98. Os valores de concentração de Sólidos Suspensos Totais (SST), pH, fósforo, CBO5 e cor nos decantadores cumpriram os limites de descarga definidos nas normas de descarga no rio Ave e no Decreto-Lei nº 236/98 em todos os ensaios. Os parâmetros cinéticos obtidos para os ensaios com descorante são os que melhor se ajustam ao projecto de uma instalação de tratamento biológico por lamas activadas do efluente da Mundotêxtil. Os valores obtidos, após ajuste, são os seguintes: k=0,015 L/(mgSSV*d); Sn=12 mg/L; a=0,7982 kgO2/kgCBO5; b=0,0233 [kgO2/(kgSSV*d); y=0,2253 kgSSV/kgCBO5; kd=0,0036 kgSSV/(kgSSV*d. Com base nos parâmetros cinéticos obtiveram-se os seguintes resultados para o projecto de uma estação de tratamento biológico por lamas activadas: · Tempo de retenção hidráulica no reactor de 1,79 d, · Volume do reactor igual a 3643 m3 · Consumo de oxigénio no reactor de 604 kg/d · Razão de recirculação igual a 0,8 · Volume total do decantador secundário igual a 540 m3 · Diâmetro do decantador secundário igual a 15 m A quantidade de oxigénio necessário é baixa e o valor mais adequado deverá ser da ordem de 1200 kg/d. Também foi efectuada uma análise aos produtos químicos consumidos pela empresa na área das tinturarias com a finalidade de identificar as substâncias com uma maior influência potencial no funcionamento da Estação de Tratamento Biológico. O encolante CB, Cera Têxtil P Líquida, Perfemina P-12, Meropan DPE-P, Meropan BRE-P, Indimina STS e Benzym TEC são os produtos químicos que têm uma influência potencial mais significativa na qualidade dos efluentes. Devido ao facto das temperaturas do efluente alimentado ao tratamento biológico da Mundotêxtil oscilarem entre 35 ºC e 43ºC efectuou-se um estudo às necessidades de água quente das tinturarias e por outro lado à capacidade de aquecimento dos efluentes disponíveis. Actualmente a racionalização dos consumos de água é cada vez mais premente, por isso também é apresentado neste trabalho um estudo para a substituição das máquinas convencionais das tinturarias com uma relação de banho 1:10 por máquinas de banho curto (1:6,5). Verifica-se a redução de consumos de 40% de água, 52% de energia eléctrica, 35% de produtos químicos, 51% das necessidades de vapor e por consequência um aumento da produtividade. A empresa pode reduzir os consumos de água em cerca de 280.000 m3/ano. A utilização do pré-tratamento com o coagulante permitirá baixar a concentração da CQO e reduzir a cor à entrada do reactor tratamento biológico. Deste modo é possível manter um tratamento eficiente à saída do tratamento biológico nas situações de descarga de cores carregadas e carga orgânica elevada. Com este conjunto de soluções, quer sejam aplicadas na totalidade ou não, a empresa Mundotêxtil pode enfrentar o futuro com mais confiança podendo estar preparada para fazer face à escassez de água e custos cada vez maiores da energia. Por outro lado pode tratar os seus efluentes a custos menores. A substituição das máquinas de tingimento por máquinas com relação de banho mais baixa (banho curto) implica investimentos elevados mas estes investimentos são necessários não só por motivos ambientais mas também devido à grande competitividade dos mercados.
Resumo:
Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.
Resumo:
This study uses the process simulator ASPEN Plus and Life Cycle Assessment (LCA) to compare three process design alternatives for biodiesel production from waste vegetable oils that are: the conventional alkali-catalyzed process including a free fatty acids (FFAs) pre-treatment, the acid-catalyzed process, and the supercritical methanol process using propane as co-solvent. Results show that the supercritical methanol process using propane as co-solvent is the most environmentally favorable alternative. Its smaller steam consumption in comparison with the other process design alternatives leads to a lower contribution to the potential environmental impacts (PEI’s). The acid-catalyzed process generally shows the highest PEI’s, in particular due to the high energy requirements associated with methanol recovery operations.