43 resultados para energetic materials
Resumo:
In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.
Resumo:
The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.
Resumo:
In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.
Resumo:
Coal contains trace quantities of natural radionuclides such as Th-232, U-235, U-238, as well as their radioactive decay products and 40K. These radionuclides can be released as fly ash in atmospheric emissions from coal-fired power plants, dispersed into the environment and deposited on the surrounding top soils. Therefore, the natural radiation background level is enhanced and consequently increase the total dose for the nearby population. A radiation monitoring programme was used to assess the external dose contribution to the natural radiation background, potentially resulting from the dispersion of coal ash in past atmospheric emissions. Radiation measurements were carried out by gamma spectrometry in the vicinity of a Portuguese coal-fired power plant. The radiation monitoring was achieved both on and off site, being the boundary delimited by a 20 km circle centered in the stacks of the coal plant. The measured radionuclides concentrations for the uranium and thorium series ranged from 7.7 to 41.3 Bq/kg for Ra-226 and from 4.7 to 71.6 Bq/kg for Th-232, while K-40 concentrations ranged from 62.3 to 795.1 Bq/kg. The highest values were registered near the power plant and at distances between 6 and 20 km from the stacks, mainly in the prevailing wind direction. The absorbed dose rates were calculated for each sampling location: 13.97-84.00 ηGy/h, while measurements from previous studies carried out in 1993 registered values in the range of 16.6-77.6 ηGy/h. The highest values were registered at locations in the prevailing wind direction (NW-SE). This study has been primarily done to assess the radiation dose rates and exposure to the nearby population in the surroundings of a coal-fired power plant. The results suggest an enhancement or at least an influence in the background radiation due to the coal plant past activities.
Resumo:
Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population.
Resumo:
In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one-factor-at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and filler replacements for polymer mortar, with significant gain of mechanical properties with regard to non-modified polymer mortars.
Resumo:
In this work, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behavior of polyester polymer mortar (PM) materials was assessed. For this purpose, different contents of GFRP recyclates (between 4% up to 12% in mass), were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of silane coupling agent addition to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers, jointly with unfinished products and scrap resulting from pultrusion manufacturing process, are landfilled, with supplementary added costs. Thus, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and reinforcement for PM materials, with significant improvements on mechanical properties with regard to non-modified formulations.
Resumo:
The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.
Resumo:
In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
Com o aumento do preço da eletricidade e o fim dos combustíveis fósseis, associados à necessidade de Portugal reduzir a sua dependência energética do exterior, provoca a necessidade urgente de apostar nas energias renováveis. Perante este cenário, e assumindo que o custo da fatura energética, é para as empresas portuguesas um fator cada vez mais determinante para serem competitivas, devido aos aumentos consecutivos da energia nos últimos anos, bem como, a subida do imposto de valor acrescentado (IVA) de 6% para 23%. Outro aspeto importante é a eficiência energética como instrumento para reduzir os consumos de eletricidade. Com estas duas medidas: utilização de energias renováveis e o aumento da eficiência energética, são extremamente importantes para a redução da produção dos gases de efeito estufa (GEE). Consequentemente, as empresas terão de investir na produção da própria energia a partir de fontes renováveis, de modo a proporcionar um desenvolvimento sustentável, associado à redução da fatura energética. Esta dissertação propõe o dimensionamento de um sistema híbrido composto por tecnologia fotovoltaica e eólica, com e sem armazenamento de energia em baterias, adequado para reduzir uma parte dos consumos de uma empresa enquadrada no sector dos plásticos. O dimensionamento deste sistema, foi efetuado com recurso à caracterização dos consumos da empresa através da recolha de dados e leituras no local da instalação. Paralelamente, foi efetuada uma pesquisa em diversos fabricantes, de modo a identificar qual o sistema mais indicado a adotar, considerando painéis fotovoltaicos, turbinas eólicas, inversores e baterias. Com base nos dados recolhidos na empresa e referentes ao potencial eólico e solar para o distrito do Porto, em conjunto com as características técnicas dos equipamentos selecionados, foi delineado o sistema híbrido utilizando para o efeito um software de simulação e otimização de sistemas híbridos, denominado Hybrid Optimization Model for Eletric Renewable (HOMER). São apresentadas várias simulações para as diversas configurações escolhidas e estudos comparativos entre si, com o objetivo de reduzir o consumo de eletricidade da rede. Adicionalmente, foram realizadas duas configurações apenas com tecnologia fotovoltaica, de modo a efetuar uma análise comparativa entre um sistema híbrido e outro apenas com uma fonte renovável. Os resultados apresentados focaram-se no desempenho diário, mensal e anual, bem como, a produção individual de cada tecnologia evidenciada. Por último, procedeu-se ao estudo da viabilidade técnico-económica das configurações.
Resumo:
Relatório de Estágio Curricular apresentado ao Instituto Superior de Contabilidade e Administração do Porto para obtenção do Grau de Mestre em Logística Orientado pelo Doutor Júlio Faceira Guedes Coorientado pelo Engenheiro Ricardo Costa Moreira
Resumo:
Contemporaneamente o Homem depara-se com um dos grandes desafios que é o de efetivar a transição para um futuro sustentável. Assim, o setor da energia tem um papel fundamental neste processo de transição, com principal enfoque no setor dos automóveis, sendo este um setor que contribui com elevadas quantidades de gases de efeito estufa libertados para a atmosfera. Também a escassez dos recursos petrolíferos constitui um ponto fundamental no tema apresentado. Com a necessidade de combater esses problemas é que se tem vindo a tentar desenvolver combustíveis renováveis e neutros quanto às emissões. A primeira geração de biocombustíveis obtidos através de culturas agrícolas terrestres preenche em parte esses requisitos, porém, não atinge os valores da procura e ainda competem com a produção de alimentos. Daí o interesse na aposta de uma segunda geração de biocombustíveis produzidos de fontes que não pertencem à cadeia alimentar e são residuais mas, que mesmo assim não permitem satisfazer as necessidades de matériaprima. A terceira geração de biocombustíveis vem justamente responder a estas questões pois assenta em matérias-primas que não competem pela utilização do solo agrícola nem são usadas para fins alimentares, tendo produtividades areais substancialmente superiores às que as culturas convencionais ou biomassas residuais conseguem assegurar. A matéria prima de terceira geração são portanto as microalgas, cujas produtividades em biomassa são extremamente elevadas, para além de produtividades muito superiores em lípidos, hidratos de carbono e/ou outros produtos de valor elevado. No entanto, este tipo de produção de biocombustível ainda enfrenta alguns problemas técnicos que o tornam num processo dispendioso para competir economicamente com outros tipos de produção de biodiesel. Na linha do que foi dito anteriormente, este trabalho apresenta um estudo de viabilidade económica e energética do biodiesel produzido através da Chlorella vulgaris, apresentando as técnicas e resultados de cultivo da Chlorella vulgaris e posteriormente de produção do biodiesel através dos lípidos obtidos através da mesma. Para melhorar a colheita das microalgas, que é uma das fases mais dispendiosas, testou-se o aumento de pH e a adição de um floculante (Pax XL-10), sendo que o primeiro não permitiu obter resultados satisfatórios, enquanto o segundo permitiu obter resultados de rendimento na ordem dos 90%. Mesmo com a melhoria da etapa da colheita, o preço mínimo do biodiesel produzido a partir do óleo de Chlorella vulgaris, com as condições ótimas de cultivo e produtividades máximas encontradas na literatura, foi de 8,76 €/L, pois, na análise económica, o Pax XL-10 revelou-se extremamente caro para utilizar na floculação de microalgas para obtenção de um produto de baixo valor, como é o biodiesel. A não utilização da floculação reduz o preço do biodiesel para 7,85 €/L. O que se pode concluir deste trabalho é que face às técnicas utilizadas, a produção de biodiesel Chlorella vulgaris apenas, não é economicamente viável, pelo que para viabilizar a sustentabilidade do processo seria ainda necessário desenvolver mais esforços no sentido de otimizar a produção de biodiesel, eventualmente associando-a à produção de um outro biocombustível produzido a partir da biomassa extraída residual e/ou da recuperação de outros produtos de maior valor.
Resumo:
Enquadrado num contexto cada vez mais marcado pela necessidade imperiosa de adoção e desenvolvimento de práticas ambientais e energeticamente sustentáveis, este trabalho visa contribuir para a caracterização e otimização do consumo de energia na produção de biodiesel. O biodiesel pode ser encarado como uma boa resposta aos graves problemas que os combustíveis fósseis estão a provocar nas sociedades modernas, pois é uma fonte de energia biodegradável, não-tóxica e sintetizada a partir de várias matérias-primas. Porém, o elevado custo de produção, como consequência do elevado preço das matérias-primas, constitui o maior problema para a sua implementação e comercialização a grande escala. A produção de biodiesel é, em sua quase totalidade, conduzida por via de reação de transesterificação, usando óleo vegetal e álcool como matérias-primas. O objetivo geral deste trabalho é otimizar energeticamente um processo de produção de biodiesel, via catálise homogênea alcalina (BCHA). Para alcançar esse objetivo, um fluxograma típico de produção foi construído e analisado, tanto do ponto de vista energético como econômico. Posteriormente oportunidades de otimização do processo foram identificadas, no sentido de reduzir o consumo de utilidades, impacto ambiental e aumentar a rentabilidade econômica. A construção do processo, a caracterização da alimentação, os critérios de operacionalidade, a obtenção de resultados e demais fatores foram efetuados com auxílio de um software de simulação Aspen Plus versão 20.0 criado pela Aspen Technology products. Os resultados do trabalho revelaram que o processo BCHA produz uma corrente com 99,9 % em biodiesel, obedecendo às normas internacionais em vigor. Na parte energética, o processo BCHA base necessitou de 21.405,1 kW em utilidades quentes e 14.886,3 kW em utilidades frias. A integração energética do processo BCHA, segundo a metodologia pinch, permitiu uma redução das necessidades quentes para 10.752,3 kW (redução de 50 %) e frias para 4.233,5 kW (redução de 72 %). A temperatura no ponto de estrangulamento (PE) foi de 157,7 ºC nas correntes quentes e 147,7 ºC nas correntes frias. Em termos econômicos, o custo total é reduzido em 35% com a integração energética proposta. Essa diminuição, deve-se sobretudo à redução do custo operacional, onde as necessidades de vapor de muita alta pressão (VMAP), vapor de alta pressão (VAP) e água de resfriamento (AR) apresentaram quebras de 2 %, 92 % e 71 %, respectivamente. Como conclusão final, salienta-se que a integração do processo BCHA estudado é energética e economicamente viável.