27 resultados para documenti rilevanti,NIRVE,search engine,snippet,frammenti rilevanti
Resumo:
Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
Resumo:
In Nonlinear Optimization Penalty and Barrier Methods are normally used to solve Constrained Problems. There are several Penalty/Barrier Methods and they are used in several areas from Engineering to Economy, through Biology, Chemistry, Physics among others. In these areas it often appears Optimization Problems in which the involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. In this work some Penalty/Barrier functions are tested and compared, using in the internal process, Derivative-free, namely Direct Search, methods. This work is a part of a bigger project involving the development of an Application Programming Interface, that implements several Optimization Methods, to be used in applications that need to solve constrained and/or unconstrained Nonlinear Optimization Problems. Besides the use of it in applied mathematics research it is also to be used in engineering software packages.
Resumo:
This paper presents a methodology for applying scheduling algorithms using Monte Carlo simulation. The methodology is based on a decision support system (DSS). The proposed methodology combines a genetic algorithm with a new local search using Monte Carlo Method. The methodology is applied to the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The methodology is tested on a set of standard instances taken from the literature and compared with others. The computation results validate the effectiveness of the proposed methodology. The DSS developed can be utilized in a common industrial or construction environment.
Resumo:
Solving systems of nonlinear equations is a problem of particular importance since they emerge through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a metaheuristic, called Directed Tabu Search (DTS) [16], is able to converge to the solutions of a set of problems for which the fsolve function of MATLAB® failed to converge. We also show the effect of the dimension of the problem in the performance of the DTS.
Resumo:
This papers aims at providing a combined strategy for solving systems of equalities and inequalities. The combined strategy uses two types of steps: a global search step and a local search step. The global step relies on a tabu search heuristic and the local step uses a deterministic search known as Hooke and Jeeves. The choice of step, at each iteration, is based on the level of reduction of the l2-norm of the error function observed in the equivalent system of equations, compared with the previous iteration.
Resumo:
This paper describes a communication model to integrate repositories of programming problems with other e-Learning software components. The motivation for this work comes from the EduJudge project that aims to connect an existing repository of programming problems to learning management systems. When trying to use the existing repositories of learning objects we realized that they are mainly specialized search engines and lack features for integration with other e-Learning systems. With this model we intend to clarify the main features of a programming problem repository, in order to enable the design and development of software components that use it. The two main points of this model are the definition of programming problems as learning objects and the definition of the core functions exposed by the repository. In both cases, this model follows the existing specifications of the IMS standard and proposes extensions to deal with the special requirements of automatic evaluation and grading of programming exercises. In the definition of programming problems as learning objects we introduced a new schema for meta-data. This schema is used to represent meta-data related to automatic evaluation that cannot be conveniently represented using the standard: the type of automatic evaluation; the requirements of the evaluation engine; or the roles of different assets - tests cases, program solutions, etc. In the definition of the core functions we used two different web services flavours - SOAP and REST - and described each function as an operation for each type of interface. We describe also the data types of the arguments of each operation. These data types consist mainly on learning objects and their identifications, but include also usage reports and queries using XQuery.
Resumo:
XSLT is a powerful and widely used language for transforming XML documents. However its power and complexity can be overwhelming for novice or infrequent users, many of which simply give up on using this language. On the other hand, many XSLT programs of practical use are simple enough to be automatically inferred from examples of source and target documents. An inferred XSLT program is seldom adequate for production usage but can be used as a skeleton of the final program, or at least as scaffolding in the process of coding it. It should be noted that the authors do not claim that XSLT programs, in general, can be inferred from examples. The aim of Vishnu - the XSLT generator engine described in this paper – is to produce XSLT programs for processing documents similar to the given examples and with enough readability to be easily understood by a programmer not familiar with the language. The architecture of Vishnu is composed by a graphical editor and a programming engine. In this paper we focus on the editor as a GWT web application where the programmer loads and edits document examples and pairs their content using graphical primitives. The programming engine receives the data collected by the editor and produces an XSLT program.
Resumo:
Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.
Resumo:
OCEANS 2003. Proceedings (Volume:1 )
Resumo:
This work presents a hybrid maneuver for gradient search with multiple AUV's. The mission consists in following a gradient field in order to locate the source of a hydrothermal vent or underwater freshwater source. The formation gradient search exploits the environment structuring by the phenomena to be studied. The ingredients for coordination are the payload data collected by each vehicle and their knowledge of the behaviour of other vehicles and detected formation distortions.
Resumo:
This paper describes the development and testing of a robotic capsule for search and rescue operations at sea. This capsule is able to operate autonomously or remotely controlled, is transported and deployed by a larger USV into a determined disaster area and is used to carry a life raft and inflate it close to survivors in large-scale maritime disasters. The ultimate goal of this development is to endow search and rescue teams with tools that extend their operational capability in scenarios with adverse atmospheric or maritime conditions.