34 resultados para damping dynamic mechanical analysis DMA CFRP electrospinning tan(delta)
Resumo:
Titanium Diboride (TiB2) presents high mechanical and physical properties. Some wear studies were also carried out in order to evaluate its tribological properties. One of the most popular wear tests for thin films is the ball-cratering configuration. This work was focused on the study of the tribological properties of TiB2 thin films using micro-abrasion tests and following the BS EN 1071-6: 2007 standard. Due to high hardness usually patented by these films, diamond was selected as abrasive on micro-abrasion tests. Micro-abrasion wear tests were performed under five different durations, using the same normal load, speed rotation and ball. Films were deposited by unbalanced magnetron sputtering Physical Vapour Deposition (PVD) technique using TiB2 targets. TiB2 films were characterized using different methods as Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Electron Probe Micro-Analyser (EPMA), Ultra Micro Hardness and Scratch-test Analysis, allowing to confirm that TiB2 presents adequate mechanical and physical properties. Ratio between hardness (coating and abrasive particles), wear resistance and wear coefficient were studied, showing that TiB2 films shows excellent properties for tribological applications.
Resumo:
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.
Resumo:
This article presents a dynamical analysis of several traffic phenomena, applying a new modelling formalism based on the embedding of statistics and Laplace transform. The new dynamic description integrates the concepts of fractional calculus leading to a more natural treatment of the continuum of the Transfer Function parameters intrinsic in this system. The results using system theory tools point out that it is possible to study traffic systems, taking advantage of the knowledge gathered with automatic control algorithms. Dynamics, Games and Science I Dynamics, Games and Science I Look Inside Other actions Export citation About this Book Reprints and Permissions Add to Papers Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn
Resumo:
“Drilling of polymeric matrix composites structures”
Resumo:
Between 2000/01 and 2006/07, the approval rate of a Thermodynamics course in a Mechanical Engineer graduation was 25%. However, a careful analysis of the results showed that 41% of the students chosen not to attend or dropped out, missing the final examination. Thus, a continuous assessment methodology was developed, whose purpose was to reduce drop out, motivating students to attend this course, believing that what was observed was due, not to the incapacity to pass, but to the anticipation of the inevitability of failure by the students. If, on one hand, motivation is defined as a broad construct pertaining to the conditions and processes that account for the arousal, direction, magnitude, and maintenance of effort, on the other hand, assessment is one of the most powerful tools to change the will that students have to learn, motivating them to learn in a quicker and permanent way. Some of the practices that were implemented, included: promoting learning goal orientation rather than performance goal orientation; cultivating intrinsic interest in the subject and put less emphasis on grades but make grading criteria explicit; emphasizing teaching approaches that encourage collaboration among students and cater for a range of teaching styles; explaining the reasons for, and the implications of, tests; providing feedback to students about their performance in a form that is non-egoinvolving and non-judgemental and helping students to interpret it; broadening the range of information used in assessing the attainment of individual students. The continuous assessment methodology developed was applied in 2007/08 and 2008/09, having found an increase in the approval from 25% to 55% (30%), accompanied by a decrease of the drop out from 41% to 23,5% (17,5%). Flunking with a numerical grade lowered from 34,4% to 22,0% (12,4%). The perception by the students of the continuous assessment relevance was evaluated with a questionnaire. 70% of the students that failed the course respond that, nevertheless, didn’t repent having done the continuous assessment.
Resumo:
A comparative study concerning the robustness of a novel, Fixed Point Transformations/Singular Value Decomposition (FPT/SVD)-based adaptive controller and the Slotine-Li (S&L) approach is given by numerical simulations using a three degree of freedom paradigm of typical Classical Mechanical systems, the cart + double pendulum. The effects of the imprecision of the available dynamical model, presence of dynamic friction at the axles of the drives, and the existence of external disturbance forces unknown and not modeled by the controller are considered. While the Slotine-Li approach tries to identify the parameters of the formally precise, available analytical model of the controlled system with the implicit assumption that the generalized forces are precisely known, the novel one makes do with a very rough, affine form and a formally more precise approximate model of that system, and uses temporal observations of its desired vs. realized responses. Furthermore, it does not assume the lack of unknown perturbations caused either by internal friction and/or external disturbances. Its another advantage is that it needs the execution of the SVD as a relatively time-consuming operation on a grid of a rough system-model only one time, before the commencement of the control cycle within which it works only with simple computations. The simulation examples exemplify the superiority of the FPT/SVD-based control that otherwise has the deficiency that it can get out of the region of its convergence. Therefore its design and use needs preliminary simulation investigations. However, the simulations also exemplify that its convergence can be guaranteed for various practical purposes.
Resumo:
Drilling of carbon fibre/epoxy laminates is usually carried out using standard drills. However, it is necessary to adapt the processes and/or tooling as the risk of delamination, or other damages, is high. These problems can affect mechanical properties of produced parts, therefore, lower reliability. In this paper, four different drills – three commercial and a special step (prototype) – are compared in terms of thrust force during drilling and delamination. In order to evaluate damage, enhanced radiography is applied. The resulting images were then computational processed using a previously developed image processing and analysis platform. Results show that the prototype drill had encouraging results in terms of maximum thrust force and delamination reduction. Furthermore, it is possible to state that a correct choice of drill geometry, particularly the use of a pilot hole, a conservative cutting speed – 53 m/min – and a low feed rate – 0.025 mm/rev – can help to prevent delamination.
Resumo:
Ao longo dos anos as estruturas existentes têm sido adaptadas para novas utilizações. No entanto, devido aos condicionalismos arquitetónicos e patrimoniais, a demolição e substituição por estruturas novas, pode-se tornar pouco viável, sendo cada vez mais exequível a opção de reforçar. A presente dissertação refere-se a uma dessas opções de reforço nomeadamente ao reforço de estruturas em betão armado com CFRP (Compósitos Reforçados com Fibras de Carbono), nomeadamente lajes e vigas. Os objetivos principais deste trabalho consistem em desenvolver uma proposta de critérios de dimensionamento de estruturas de betão armado reforçadas com CFRP tendo por base o disposto no Eurocódigo 2 comparando -a com o relatório técnico publicado “bulletin 14 - Externally bonded FRP reinforcement for RC structures”, da Fédération Internationale du Béton. Recorrendo à revisão bibliográfica, onde estão referidos temas como as características dos materiais de um sistema FRP, as suas técnicas de reforço e com uma exposição do comportamento das vigas reforçadas à flexão, particularmente no seu comportamento mecânico e modos de ruína associados a este tipo de reforço. Apresentam-se duas metodologias de cálculo para dimensionamento deste tipo de reforço para os diferentes estados limites, e aplicam-se a cada uma das metodologias de cálculo a uma viga com necessidade de reforço à flexão e ao corte, devido a um aumento de esforços provocado pelo aumento da sobrecarga. Desenvolve-se um estudo experimental onde se pretende avaliar a eficácia de um sistema de reforço à flexão com compósitos de CFRP colado externamente a uma viga e com diferentes taxas de reforço.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the waste reuse in polymer mortars and concrete. © 2011, Advanced Engineering Solutions.
Resumo:
Thermally expandable particles (TEPs) are used in a wide variety of applications by industry mainly for weight reduction and appearance improvement for thermoplastics, inks, and coatings. In adhesive bonding, TEPs have been used for recycling purposes. However, TEPs might be used to modify structural adhesives for other new purposes, such as: to increase the joint strength by creating an adhesive functionally modified along the overlap of the joint by gradual heating and/or to heal the adhesive in case of damage. In this study, the behaviour of a structural polyurethane adhesive modified with TEPs was investigated as a preliminary study for further investigations on the potential of TEPs in adhesive joints. Tensile bulk tests were performed to get the tensile properties of the unmodified and TEPs-modified adhesive, while Double Cantilever Beam (DCB) test was performed in order to evaluate the resistance to mode I crack propagation of unmodified and TEPs-modified adhesive. In addition, in order to investigate the behaviour of the particles while encapsulated in adhesives, a thermal analysis was done. Scanning electron microscopy (SEM) was used to examine the fracture surface morphology of the specimens. The fracture toughness of the TEPs-modified adhesive was found to increase by addition of TEPs, while the adhesive tensile strength at yield decreased. The temperature where the particles show the maximum expansion varied with TEPs concentration, decreasing with increasing the TEPs content.
Resumo:
The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.
Resumo:
Mestrado em Engenharia Civil – Ramo Estruturas
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
As excelentes propriedades mecânicas, associadas ao seu baixo peso, fazem com que os materiais compósitos sejam atualmente dos mais interessantes da nossa sociedade tecnológica. A crescente utilização destes materiais e a excelência dos resultados daí provenientes faz com que estes materiais sejam utilizados em estruturas complexas de responsabilidade, pelo que a sua maquinagem se torna necessária de forma a possibilitar a ligação entre peças. O processo de furação é o mais frequente. O processo de maquinagem de compósitos terá como base os métodos convencionais utilizados nos materiais metálicos. O processo deverá, no entanto, ser convenientemente adaptado, quer a nível de parâmetros, quer a nível de ferramentas a utilizar. As características dos materiais compósitos são bastante particulares pelo que, quando são sujeitos a maquinagem poderão apresentar defeitos tais como delaminação, fissuras intralaminares, arrancamento de fibras ou dano por sobreaquecimento. Para a detecção destes danos, por vezes a inspeção visual não é suficiente, sendo necessário recorrer a processos específicos de análise de danos. Existem já, alguns estudos, cujo âmbito foi a obtenção de furos de qualidade em compósitos, com minimização do dano, não se podendo comparar ainda com a informação existente, no que se refere à maquinagem de materiais metálicos ou ligas metálicas. Desta forma, existe ainda um longo caminho a percorrer, de forma a que o grau de confiança na utilização destes materiais se aproxime aos materiais metálicos. Este trabalho experimental desenvolvido nesta tese assentou essencialmente na furação de placas laminadas e posterior análise dos danos provocados por esta operação. Foi dada especial atenção à medição da delaminação causada pela furação e à resistência mecânica do material após ser maquinado. Os materiais utilizados, para desenvolver este trabalho experimental, foram placas compósitas de carbono/epóxido com duas orientações de fibras diferentes: unidireccionais e em “cross-ply”. Não se conseguiu muita informação, junto do fornecedor, das suas características pelo que se levaram a cabo ensaios que permitiram determinar o seu módulo de elasticidade. Relativamente á sua resistência â tração, como já foi referido, a grande resistência oferecida pelo material, associada às limitações da máquina de ensaios não permitiu chegar a valores conclusivos. Foram usadas três geometrias de ferramenta diferentes: helicoidal, Brad e Step. Os materiais utilizados nas ferramentas, foram o aço rápido (HSS) e o carboneto de tungsténio para as brocas helicoidais de 118º de ângulo de ponta e apenas o carboneto de tungsténio para as brocas Brad e Step. As ferramentas em diamante não foram consideradas neste trabalho, pois, embora sejam reconhecidas as suas boas características para a maquinagem de compósitos, o seu elevado custo não justifica a sua escolha, pelo menos num trabalho académico, como é o caso. As vantagens e desvantagens de cada geometria ou material utilizado foram avaliadas, tanto no que diz respeito à delaminação como á resistência mecânica dos provetes ensaiados. Para a determinação dos valores de delaminação, foi usada a técnica de Raio X. Algum conhecimento já existente relativamente a este processo permitiu definir alguns parâmetros (por exemplo: tempo de exposição das placas ao liquido contrastante), que tornaram acessível o procedimento de obtenção de imagens das placas furadas. Importando estas imagens para um software de desenho (no caso – AutoCad), foi possível medir as áreas delaminadas e chegar a valores para o fator de delaminação de cada furo efetuado. Terminado este processo, todas as placas foram sujeitas a ensaios de esmagamento, de forma a avaliar a forma como os parâmetros de maquinagem afectaram a resistência mecânica do material. De forma resumida, são objetivos deste trabalho: - Caracterizar as condições de corte em materiais compósitos, mais especificamente em fibras de carbono reforçado com matriz epóxida (PRFC); - Caracterização dos danos típicos provocados pela furação destes materiais; - Desenvolvimento de análise não destrutiva (RX) para avaliação dos danos provocados pela furação; - Conhecer modelos existentes com base na mecânica da fratura linear elástica (LEFM); - Definição de conjunto de parâmetros ideais de maquinagem com o fim de minimizar os danos resultantes da mesma, tendo em conta os resultados provenientes dos ensaios de força, da análise não destrutiva e da comparação com modelos de danos existentes e conhecidos.
Resumo:
Over the past decades several approaches for schedulability analysis have been proposed for both uni-processor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for mis-interpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by-construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uni-processor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.