50 resultados para citation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the increased need to support dynamic task-level parallelism in embedded real-time systems and proposes a Java framework that combines the Real-Time Specification for Java (RTSJ) with the Fork/Join (FJ) model, following a fixed priority-based scheduling scheme. Our work intends to support parallel runtimes that will coexist with a wide range of other complex independently developed applications, without any previous knowledge about their real execution requirements, number of parallel sub-tasks, and when those sub-tasks will be generated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last three decades, computer architects have been able to achieve an increase in performance for single processors by, e.g., increasing clock speed, introducing cache memories and using instruction level parallelism. However, because of power consumption and heat dissipation constraints, this trend is going to cease. In recent times, hardware engineers have instead moved to new chip architectures with multiple processor cores on a single chip. With multi-core processors, applications can complete more total work than with one core alone. To take advantage of multi-core processors, parallel programming models are proposed as promising solutions for more effectively using multi-core processors. This paper discusses some of the existent models and frameworks for parallel programming, leading to outline a draft parallel programming model for Ada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demonstration proposal moves from the capabilities of a wireless biometric badge [4], which integrates a localization and tracking service along with an automatic personal identification mechanism, to show how a full system architecture is devised to enable the control of physical accesses to restricted areas. The system leverages on the availability of a novel IEEE 802.15.4/Zigbee Cluster Tree network model, on enhanced security levels and on the respect of all the users' privacy issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are increasingly used in various application domains like home-automation, agriculture, industries and infrastructure monitoring. As applications tend to leverage larger geographical deployments of sensor networks, the availability of an intuitive and user friendly programming abstraction becomes a crucial factor in enabling faster and more efficient development, and reprogramming of applications. We propose a programming pattern named sMapReduce, inspired by the Google MapReduce framework, for mapping application behaviors on to a sensor network and enabling complex data aggregation. The proposed pattern requires a user to create a network-level application in two functions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to typical sensor networking operation which makes sensing and topological modalities accessible to the user.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the complexity of embedded systems increases, multiple services have to compete for the limited resources of a single device. This situation is particularly critical for small embedded devices used in consumer electronics, telecommunication, industrial automation, or automotive systems. In fact, in order to satisfy a set of constraints related to weight, space, and energy consumption, these systems are typically built using microprocessors with lower processing power and limited resources. The CooperatES framework has recently been proposed to tackle these challenges, allowing resource constrained devices to collectively execute services with their neighbours in order to fulfil the complex Quality of Service (QoS) constraints imposed by users and applications. In order to demonstrate the framework's concepts, a prototype is being implemented in the Android platform. This paper discusses key challenges that must be addressed and possible directions to incorporate the desired real-time behaviour in Android.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulators are indispensable tools to support the development and testing of cooperating objects such as wireless sensor networks (WSN). However, it is often not possible to compare the results of different simulation tools. Thus, the goal of this paper is the specification of a generic simulation platform for cooperating objects. We propose a platform that consists of a set of simulators that together fulfill desired simulator properties. We show that to achieve comparable results the use of a common specification language for the software-under-test is not feasible. Instead, we argue that using common input formats for the simulated environment and common output formats for the results is useful. This again motivates that a simulation tool consisting of a set of existing simulators that are able to use common scenario-input and can produce common output which will bring us a step closer to the vision of achieving comparable simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contention on the memory bus in COTS based multicore systems is becoming a major determining factor of the execution time of a task. Analyzing this extra execution time is non-trivial because (i) bus arbitration protocols in such systems are often undocumented and (ii) the times when the memory bus is requested to be used are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. We present a method for finding an upper bound on the extra execution time of a task due to contention on the memory bus in COTS based multicore systems. This method makes no assumptions on the bus arbitration protocol (other than assuming that it is work-conserving).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been widely studied how to schedule real-time tasks on multiprocessor platforms. Several studies find optimal scheduling policies for implicit deadline task systems, but it is hard to understand how each policy utilizes the two important aspects of scheduling real-time tasks on multiprocessors:inter-job concurrency and job urgency. In this paper, we introduce a new scheduling policy that considers these two properties. We prove that the policy is optimal for the special case when the execution time of all tasks are equally one and deadlines are implicit, and observe that the policy is a new concept in that it is not an instance of Pfair or ERfair. It remains open to find a schedulability condition for general task systems under our scheduling policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under the worst-case conditions and to make the appropriate design choices. This is particular relevant for time-sensitive WSN applications, where the timing behavior of the network protocols (message transmission must respect deadlines) impacts on the correct operation of these applications. In that direction this paper contributes with a methodology based on Network Calculus, which enables quick and efficient worst-case dimensioning of static or even dynamically changing cluster-tree WSNs where the data sink can either be static or mobile. We propose closed-form recurrent expressions for computing the worst-case end-to-end delays, buffering and bandwidth requirements across any source-destination path in a cluster-tree WSN. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study using commercially available technology, namely TelosB motes running TinyOS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the problem of scheduling a set of sporadically arriving implicit-deadline tasks to meet deadlines on a uniprocessor. Static-priority scheduling is considered using the slack-monotonic priority-assignment scheme. We prove that its utilization bound is 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the growing complexity and dynamism of many embedded application domains (including consumer electronics, robotics, automotive and telecommunications), it is increasingly difficult to react to load variations and adapt the system's performance in a controlled fashion within an useful and bounded time. This is particularly noticeable when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may exhibit unrestricted QoS inter-dependencies. This paper proposes a novel anytime adaptive QoS control policy in which the online search for the best set of QoS levels is combined with each user's personal preferences on their services' adaptation behaviour. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-time scheduling usually considers worst-case values for the parameters of task (or message stream) sets, in order to provide safe schedulability tests for hard real-time systems. However, worst-case conditions introduce a level of pessimism that is often inadequate for a certain class of (soft) real-time systems. In this paper we provide an approach for computing the stochastic response time of tasks where tasks have inter-arrival times described by discrete probabilistic distribution functions, instead of minimum inter-arrival (MIT) values.