21 resultados para charged aerosols


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A backside protein-surface imprinting process is presented herein as a novel way to generate specific synthetic antibody materials. The template is covalently bonded to a carboxylated-PVC supporting film previously cast on gold, let to interact with charged monomers and surrounded next by another thick polymer. This polymer is then covalently attached to a transducing element and the backside of this structure (supporting film plus template) is removed as a regular “tape”. The new sensing layer is exposed after the full template removal, showing a high density of re-binding positions, as evidenced by SEM. To ensure that the templates have been efficiently removed, this re-binding layer was cleaned further with a proteolytic enzyme and solution washout. The final material was named MAPS, as in the back-side reading of SPAM, because it acts as a back-side imprinting of this recent approach. It was able to generate, for the first time, a specific response to a complex biomolecule from a synthetic material. Non-imprinted materials (NIMs) were also produced as blank and were used as a control of the imprinting process. All chemical modifications were followed by electrochemical techniques. This was done on a supporting film and transducing element of both MAPS and NIM. Only the MAPS-based device responded to oxLDL and the sensing layer was insensitive to other serum proteins, such as myoglobin and haemoglobin. Linear behaviour between log(C, μg mL−1) versus charged tranfer resistance (RCT, Ω) was observed by electrochemical impedance spectroscopy (EIS). Calibrations made in Fetal Calf Serum (FCS) were linear from 2.5 to 12.5 μg mL−1 (RCT = 946.12 × log C + 1590.7) with an R-squared of 0.9966. Overall, these were promising results towards the design of materials acting close to the natural antibodies and applied to practical use of clinical interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfadimethoxine (SDM) is one of the drugs, often used in the aquaculture sector to prevent the spread of disease in freshwater fish aquaculture. Its spread through the soil and surface water can contribute to an increase in bacterial resistance. It is therefore important to control this product in the environment. This work proposes a simple and low-cost potentiometric device to monitor the levels of SDM in aquaculture waters, thus avoiding its unnecessary release throughout the environment. The device combines a micropipette tip with a PVC membrane selective to SDM, prepared from an appropriate cocktail, and an inner reference solution. The membrane includes 1% of a porphyrin derivative acting as ionophore and a small amount of a lipophilic cationic additive (corresponding to 0.2% in molar ratio). The composition of the inner solution was optimized with regard to the kind and/or concentration of primary ion, chelating agent and/or a specific interfering charged species, in different concentration ranges. Electrodes constructed with inner reference solutions of 1 × 10−8 mol/L SDM and 1 × 10−4 mol/L chromate ion showed the best analytical features. Near-Nernstian response was obtained with slopes of −54.1 mV/decade, an extraordinary detection limit of 7.5 ng/mL (2.4 × 10−8 mol/L) when compared with other electrodes of the same type. The reproducibility, stability and response time are good and even better than those obtained by liquid contact ISEs. Recovery values of 98.9% were obtained from the analysis of aquaculture water samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

III Jornadas de Electroquímica e Inovação (Electroquímica e Nanomateriais), na Universidade de Trás-os-Montes e Alto Douro, Vila Real, 16 a 17 de Setembro de 2013

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graduate Student Symposium on Molecular Imprinting 2013, na Queen’s University, Belfast, United Kingdom, 15 a 17 de Agosto de 2013

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sectorization means dividing a set of basic units into sectors or parts, a procedure that occurs in several contexts, such as political, health and school districting, social networks and sales territory or airspace assignment, to achieve some goal or to facilitate an activity. This presentation will focus on three main issues: Measures, a new approach to sectorization problems and an application in waste collection. When designing or comparing sectors different characteristics are usually taken into account. Some are commonly used, and they are related to the concepts of contiguity, equilibrium and compactness. These fundamental characteristics will be addressed, by defining new generic measures and by proposing a new measure, desirability, connected with the idea of preference. A new approach to sectorization inspired in Coulomb’s Law, which establishes a relation of force between electrically charged points, will be proposed. A charged point represents a small region with specific characteristics/values creating relations of attraction/repulsion with the others (two by two), proportional to the charges and inversely proportional to their distance. Finally, a real case about sectorization and vehicle routing in solid waste collection will be mentioned.