27 resultados para antibacterial agent
Resumo:
A distributed, agent-based intelligent system models and simulates a smart grid using physical players and computationally simulated agents. The proposed system can assess the impact of demand response programs.
Resumo:
Media content personalisation is a major challenge involving viewers as well as media content producer and distributor businesses. The goal is to provide viewers with media items aligned with their interests. Producers and distributors engage in item negotiations to establish the corresponding service level agreements (SLA). In order to address automated partner lookup and item SLA negotiation, this paper proposes the MultiMedia Brokerage (MMB) platform, which is a multiagent system that negotiates SLA regarding media items on behalf of media content producer and distributor businesses. The MMB platform is structured in four service layers: interface, agreement management, business modelling and market. In this context, there are: (i) brokerage SLA (bSLA), which are established between individual businesses and the platform regarding the provision of brokerage services; and (ii) item SLA (iSLA), which are established between producer and distributor businesses about the provision of media items. In particular, this paper describes the negotiation, establishment and enforcement of bSLA and iSLA, which occurs at the agreement and negotiation layers, respectively. The platform adopts a pay-per-use business model where the bSLA define the general conditions that apply to the related iSLA. To illustrate this process, we present a case study describing the negotiation of a bSLA instance and several related iSLA instances. The latter correspond to the negotiation of the Electronic Program Guide (EPG) for a specific end viewer.
Resumo:
Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced with a multi-agent system with artificial intelligence techniques – the MASGriP (Multi-Agent Smart Grid Platform). Using strategic behaviours in each player, this system simulates the profile of real players by using software agents. This paper shows the importance of modeling these behaviours for studying this type of scenarios. A case study with three examples shows the differences between each player and the best behaviour in order to achieve the higher profit in each situation.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff.
Resumo:
The dynamism and ongoing changes that the electricity markets sector is constantly suffering, enhanced by the huge increase in competitiveness, create the need of using simulation platforms to support operators, regulators, and the involved players in understanding and dealing with this complex environment. This paper presents an enhanced electricity market simulator, based on multi-agent technology, which provides an advanced simulation framework for the study of real electricity markets operation, and the interactions between the involved players. MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) uses real data for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations bring to different countries. Also, the development of an upper-ontology to support the communication between participating agents, provides the means for the integration of this simulator with other frameworks, such as MAN-REM (Multi-Agent Negotiation and Risk Management in Electricity Markets). A case study using the enhanced simulation platform that results from the integration of several systems and different tools is presented, with a scenario based on real data, simulating the MIBEL electricity market environment, and comparing the simulation performance with the real electricity market results.
Resumo:
This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.
Resumo:
Multi-agent approaches have been widely used to model complex systems of distributed nature with a large amount of interactions between the involved entities. Power systems are a reference case, mainly due to the increasing use of distributed energy sources, largely based on renewable sources, which have potentiated huge changes in the power systems’ sector. Dealing with such a large scale integration of intermittent generation sources led to the emergence of several new players, as well as the development of new paradigms, such as the microgrid concept, and the evolution of demand response programs, which potentiate the active participation of consumers. This paper presents a multi-agent based simulation platform which models a microgrid environment, considering several different types of simulated players. These players interact with real physical installations, creating a realistic simulation environment with results that can be observed directly in the reality. A case study is presented considering players’ responses to a demand response event, resulting in an intelligent increase of consumption in order to face the wind generation surplus.
Resumo:
Os Mercados Eletrónicos atingiram uma complexidade e nível de sofisticação tão elevados, que tornaram inadequados os modelos de software convencionais. Estes mercados são caracterizados por serem abertos, dinâmicos e competitivos, e constituídos por várias entidades independentes e heterogéneas. Tais entidades desempenham os seus papéis de forma autónoma, seguindo os seus objetivos, reagindo às ocorrências do ambiente em que se inserem e interagindo umas com as outras. Esta realidade levou a que existisse por parte da comunidade científica um especial interesse no estudo da negociação automática executada por agentes de software [Zhang et al., 2011]. No entanto, a diversidade dos atores envolvidos pode levar à existência de diferentes conceptualizações das suas necessidades e capacidades dando origem a incompatibilidades semânticas, que podem prejudicar a negociação e impedir a ocorrência de transações que satisfaçam as partes envolvidas. Os novos mercados devem, assim, possuir mecanismos que lhes permitam exibir novas capacidades, nomeadamente a capacidade de auxiliar na comunicação entre os diferentes agentes. Pelo que, é defendido neste trabalho que os mercados devem oferecer serviços de ontologias que permitam facilitar a interoperabilidade entre os agentes. No entanto, os humanos tendem a ser relutantes em aceitar a conceptualização de outros, a não ser que sejam convencidos de que poderão conseguir um bom negócio. Neste contexto, a aplicação e exploração de relações capturadas em redes sociais pode resultar no estabelecimento de relações de confiança entre vendedores e consumidores, e ao mesmo tempo, conduzir a um aumento da eficiência da negociação e consequentemente na satisfação das partes envolvidas. O sistema AEMOS é uma plataforma de comércio eletrónico baseada em agentes que inclui serviços de ontologias, mais especificamente, serviços de alinhamento de ontologias, incluindo a recomendação de possíveis alinhamentos entre as ontologias dos parceiros de negociação. Este sistema inclui também uma componente baseada numa rede social, que é construída aplicando técnicas de análise de redes socias sobre informação recolhida pelo mercado, e que permite melhorar a recomendação de alinhamentos e auxiliar os agentes na sua escolha. Neste trabalho são apresentados o desenvolvimento e implementação do sistema AEMOS, mais concretamente: • É proposto um novo modelo para comércio eletrónico baseado em agentes que disponibiliza serviços de ontologias; • Adicionalmente propõem-se o uso de redes sociais emergentes para captar e explorar informação sobre relações entre os diferentes parceiros de negócio; • É definida e implementada uma componente de serviços de ontologias que é capaz de: • o Sugerir alinhamentos entre ontologias para pares de agentes; • o Traduzir mensagens escritas de acordo com uma ontologia em mensagens escritas de acordo com outra, utilizando alinhamentos previamente aprovados; • o Melhorar os seus próprios serviços recorrendo às funcionalidades disponibilizadas pela componente de redes sociais; • É definida e implementada uma componente de redes sociais que: • o É capaz de construir e gerir um grafo de relações de proximidade entre agentes, e de relações de adequação de alinhamentos a agentes, tendo em conta os perfis, comportamento e interação dos agentes, bem como a cobertura e utilização dos alinhamentos; • o Explora e adapta técnicas e algoritmos de análise de redes sociais às várias fases dos processos do mercado eletrónico. A implementação e experimentação do modelo proposto demonstra como a colaboração entre os diferentes agentes pode ser vantajosa na melhoria do desempenho do sistema e como a inclusão e combinação de serviços de ontologias e redes sociais se reflete na eficiência da negociação de transações e na dinâmica do mercado como um todo.