21 resultados para analysis of performance
Resumo:
This paper examines modern economic growth according to the multidimensional scaling (MDS) method and state space portrait (SSP) analysis. Electing GDP per capita as the main indicator for economic growth and prosperity, the long-run perspective from 1870 to 2010 identifies the main similarities among 34 world partners’ modern economic growth and exemplifies the historical waving mechanics of the largest world economy, the USA. MDS reveals two main clusters among the European countries and their old offshore territories, and SSP identifies the Great Depression as a mild challenge to the American global performance, when compared to the Second World War and the 2008 crisis.
Resumo:
This paper analyzes the performance of two cooperative robot manipulators. In order to capture the working performancewe formulated several performance indices that measure the manipulability, the effort reduction and the equilibrium between the two robots. In this perspective the proposed indices we determined the optimal values for the system parameters. Furthermore, it is studied the implementation of fractional-order algorithms in the position/force control of two cooperative robotic manipulators holding an object.
Resumo:
This paper studies periodic gaits of multi-legged locomotion systems based on dynamic models. The purpose is to determine the system performance during walking and the best set of locomotion variables. For that objective the prescribed motion of the robot is completely characterized in terms of several locomotion variables such as gait, duty factor, body height, step length, stroke pitch, foot clearance, legs link lengths, foot-hip offset, body and legs mass and cycle time. In this perspective, we formulate three performance measures of the walking robot namely, the mean absolute energy, the mean power dispersion and the mean power lost in the joint actuators per walking distance. A set of model-based experiments reveals the influence of the locomotion variables in the proposed indices.
Resumo:
4th International Conference on Climbing and Walking Robots - From Biology to Industrial Applications
Resumo:
Although the issue of the out-of-plane response of unreinforced masonry structures under earthquake excitation is well known with consensus among the research community, this issue is simultaneously one of the more complex and most neglected areas on the seismic assessment of existing buildings. Nonetheless, its characterization should be found on the solid knowledge of the phenomenon and on the complete understanding of methodologies currently used to describe it. Based on this assumption, this article presents a general framework on the issue of the out-of-plane performance of unreinforced masonry structures, beginning with a brief introduction to the topic, followed by a compact state of art in which the principal methodologies proposed to assess the out-of-plane behavior of unreinforced masonry structures are presented. Different analytical approaches are presented, namely force and displacement-based, complemented with the presentation of existing numerical tools for the purpose presented above. Moreover, the most relevant experimental campaigns carried out in order to reproduce the phenomenon are reviewed and briefly discussed.
Resumo:
With the need to find an alternative way to mechanical and welding joints, and at the same time to overcome some limitations linked to these traditional techniques, adhesive bonds can be used. Adhesive bonding is a permanent joining process that uses an adhesive to bond the components of a structure. Composite materials reinforced with fibres are becoming increasingly popular in many applications as a result of a number of competitive advantages. In the manufacture of composite structures, although the fabrication techniques reduce to the minimum by means of advanced manufacturing techniques, the use of connections is still required due to the typical size limitations and design, technological and logistical aspects. Moreover, it is known that in many high performance structures, unions between composite materials with other light metals such as aluminium are required, for purposes of structural optimization. This work deals with the experimental and numerical study of single lap joints (SLJ), bonded with a brittle (Nagase Chemtex Denatite XNRH6823) and a ductile adhesive (Nagase Chemtex Denatite XNR6852). These are applied to hybrid joints between aluminium (AL6082-T651) and carbon fibre reinforced plastic (CFRP; Texipreg HS 160 RM) adherends in joints with different overlap lengths (LO) under a tensile loading. The Finite Element (FE) Method is used to perform detailed stress and damage analyses allowing to explain the joints’ behaviour and the use of cohesive zone models (CZM) enables predicting the joint strength and creating a simple and rapid design methodology. The use of numerical methods to simulate the behaviour of the joints can lead to savings of time and resources by optimizing the geometry and material parameters of the joints. The joints’ strength and failure modes were highly dependent on the adhesive, and this behaviour was successfully modelled numerically. Using a brittle adhesive resulted in a negligible maximum load (Pm) improvement with LO. The joints bonded with the ductile adhesive showed a nearly linear improvement of Pm with LO.