22 resultados para affective learning design
Resumo:
The European Project Semester at ISEP (EPS@ISEP) is a one semester project-based learning programme addressed to engineering students from diverse scientific backgrounds and nationalities. The students, organized in multicultural teams, are challenged to solve real world multidisciplinary problems, accounting for 30 ECTU. The EPS package, although focused on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). This paper presents the study plan, resources, operation and results of the EPS@ISEP that was created in 2011 to apply the best engineering education practices and promote the internationalization of ISEP. The results show that the EPS@ISEP students acquire during one semester the scientific, technical and soft competences necessary to propose, design and implement a solution for a multidisciplinary problem.
Resumo:
Cet article décrit la méthodologie qui a été employé dans le développement d’un cours de post graduation et qui a eu pour base les critères de qualité dans les dimensions de l’institution, la technologie, le design des media, la pédagogie et l’évaluation. En parallèle, nous avons aussi analyse quelques résultat provenant d’un questionnaire que les étudiants ont répondu et où ils ont identifié les critères de succès. Nous concluons avec quelques suggestions pratiques pour ces qui aimerions proposer des cours em b-learning.
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather events. Transportation is one of the main uses of energy, and its excessive fossil fuel dependency is driving the search for alternative and sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. The process includes harvesting and drying, two energy consuming steps, which are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the deontological ethics, social compromise skills and sustainable development awareness of the students.
Resumo:
8th International Symposium on Project Approaches in Engineering Education (PAEE)
Resumo:
Proceedings of the 8th International Symposium on Project Approaches in Engineering Education (PAEE), Guimarães, 2016