34 resultados para Support for Learning
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
Learnin management systems have gained an increasing role in the context of Higher Education Institutions as essential tools to support learning...
Resumo:
Proceedings of EULEARN09 - Intenational Conference and New Learning Technologies, Barcelona, Spain, 6-8 July
Resumo:
— In the new learning environments, built width digital technologies, the need to promote quality of education resources, commonly known as Learning Objects, which can support formal and informal distance learning, emerge as one of the biggest challenge that educational institutions will have to face. Due to the fact that is expensive, the reuse and sharing became very important issue. This article presents a Learning Object Repository which aims to store, to disseminate and maintain accessible Learning Objects.
Resumo:
With the advent of Web 2.0, new kinds of tools became available, which are not seen as novel anymore but are widely used. For instance, according to Eurostat data, in 2010 32% of individuals aged 16 to 74 used the Internet to post messages to social media sites or instant messaging tools, ranging from 17% in Romania to 46% in Sweden (Eurostat, 2012). Web 2.0 applications have been used in technology-enhanced learning environments. Learning 2.0 is a concept that has been used to describe the use of social media for learning. Many Learning 2.0 initiatives have been launched by educational and training institutions in Europe. Web 2.0 applications have also been used for informal learning. Web 2.0 tools can be used in classrooms, virtual or not, not only to engage students but also to support collaborative activities. Many of these tools allow users to use tags to organize resources and facilitate their retrieval at a later date or time. The aim of this chapter is to describe how tagging has been used in systems that support formal or informal learning and to summarize the functionalities that are common to these systems. In addition, common and unusual tagging applications that have been used in some Learning Objects Repositories are analysed.
Resumo:
Remote laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers, that gave support to students' use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real-world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. In addition, the last issue deals with the use of a multimeter in dc mode when reading ac values, a use that collides with the lab settings. All scenarios are presented and discussed, including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information-sharing between all actors, i.e., developers, teachers, and students.
Resumo:
Standards for learning objects focus primarily on content presentation. They were already extended to support automatic evaluation but it is limited to exercises with a predefined set of answers. The existing standards lack the metadata required by specialized evaluators to handle types of exercises with an indefinite set of solutions. To address this issue we extended existing learning object standards to the particular requirements of a specialized domain. We present a definition of programming problems as learning objects that is compatible both with Learning Management Systems and with systems performing automatic evaluation of programs. The proposed definition includes metadata that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the valuation engine; and the roles of different assets - tests cases, program solutions, etc. We present also the EduJudge project and its main services as a case study on the use of the proposed definition of programming problems as learning objects.
Resumo:
The use of Laptops and the Internet has produced the technological conditions for instructors and students can take advantage from the diversity of online information, communication, collaboration and sharing with others. The integration of Internet services in the teaching practices can be responsible for thematic, social and digital improvement for the agents involved. There are many benefits when we use a Learning Management Systems (LMS) such as Moodle, to support the lectures in higher education. We also will consider its implications for student support and online interaction, leading educational agents to a collaborating of different learning environments, where they can combine face-to-face instruction with computer-mediated instruction, blended-learning, and increases the possibilities for better quality and quantity of human communication in a learning background. In general components of learning management systems contain synchronous and asynchronous communication tools, management features, and assessment utilities. These assessment utilities allow lecturers to systematize basic assessment tasks. Assessments can be straightaway delivered to the student, and upon conclusion, immediately returned with grades and detailed feedback. Therefore learning management systems can also be used for assessment purposes in Higher Education.
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
Measuring the quality of a b-learning environment is critical to determine the success of a b-learning course. Several initiatives have been recently conducted on benchmarking and quality in e-learning. Despite these efforts in defining and examining quality issues concerning online courses, a defining instrument to evaluate quality is one of the key challenges for blended learning, since it incorporates both traditional and online instruction methods. For this paper, six frameworks for quality assessment of technological enhanced learning were examined and compared regarding similarities and differences. These frameworks aim at the same global objective: the quality of e-learning environment/products. They present different perspectives but also many common issues. Some of them are more specific and related to the course and other are more global and related to institutional aspects. In this work we collected and arrange all the quality criteria identified in order to get a more complete framework and determine if it fits our b-learning environment. We also included elements related to our own b-learning research and experience, acquired during more than 10 years of experience. As a result we have create a new quality reference with a set of dimensions and criteria that should be taken into account when you are analyzing, designing, developing, implementing and evaluating a b-learning environment. Besides these perspectives on what to do when you are developing a b-learning environment we have also included pedagogical issues in order to give directions on how to do it to reach the success of the learning. The information, concepts and procedures here presented give support to teachers and instructors, which intend to validate the quality of their blended learning courses.
Resumo:
A evolução dos dispositivos móveis e a mudança de paradigma educacional, permitiu o surgimento de um novo conceito no processo de ensino e aprendizagem, o mobile learning. O mobile learning pode ser visto como um conceito multidisciplinar, dependendo da perspetiva de cada autor, pois ainda não existe um consenso em relação à definição do conceito. No entanto, todos os autores concordam que o mobile learning consiste na aquisição de conhecimento ou competência através do uso de tecnologias móveis, em qualquer lugar e momento. A presente investigação, de natureza exploratória, pretendeu estudar a receptividade e predisposição dos estudantes e docentes do ensino superior para com a utilização do mobile learning, uma vez que o ensino superior parece ser o ambiente ideal para a realização deste estudo. Por um lado, devido à democratização dos dispositivos móveis, por outro, porque o Instituto Politécnico do Porto pretende vir a implementar um projeto de mobile learning, enquadrado no e- IPP. Deste modo, para a concretização desta investigação, foi realizada uma revisão bibliográfica exaustiva que serviu de base de sustentação para todo o trabalho, complementada com um questionário, de forma a dar resposta às questões de investigação. Depois de recolhidos todos os resultados obtidos através do questionário, procedeu-se à análise e discussão mesmos, bem como às respectivas conclusões.
Resumo:
This paper proposes a wind speed forecasting model that contributes to the development and implementation of adequate methodologies for Energy Resource Man-agement in a distribution power network, with intensive use of wind based power generation. The proposed fore-casting methodology aims to support the operation in the scope of the intraday resources scheduling model, name-ly with a time horizon of 10 minutes. A case study using a real database from the meteoro-logical station installed in the GECAD renewable energy lab was used. A new wind speed forecasting model has been implemented and it estimated accuracy was evalu-ated and compared with a previous developed forecast-ing model. Using as input attributes the information of the wind speed concerning the previous 3 hours enables to obtain results with high accuracy for the wind short-term forecasting.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.