21 resultados para Sugar consumption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand Response has been taking over the years an extreme importance. There’s a lot of demand response programs, one of them proposed in this paper, using air conditioners that could increase the power quality and decrease the spent money in many ways like: infrastructures and customers energy bill reduction. This paper proposes a method and a study on how air conditioners could integrate demand response programs. The proposed method has been modelled as an energy resources management optimization problem. This paper presents two case studies, the first one with all costumers participating and second one with some of costumers. The results obtained for both case studies have been analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dairy foods comprise a range of products with varying nutritional content. The intake of dairy products (DPs) has been shown to have beneficial effects on body weight and body fat. This study aimed to examine the independent association between DP intake, body mass index (BMI), and percentage body fat (%BF) in adolescents. A cross-sectional, school-based study was conducted with 1,001 adolescents (418 boys), ages 15–18 years, from the Azorean Archipelago, Portugal. Anthropometric measurements were recorded (weight and height), and %BF was assessed using bioelectric impedance analysis. Adolescent food intake was measured using a self-administered, semiquantitative food frequency questionnaire. Data were analyzed separately for girls and boys, and separate multiple linear regression analysis was used to estimate the association between total DP, milk, yogurt, and cheese intake, BMI, and %BF, adjusting for potential confounders. For boys and girls, respectively, total DP consumption was 2.6 ± 1.9 and 2.9 ± 2.5 servings/day (P = 0.004), while milk consumption was 1.7 ± 1.4 and 2.0 ± 1.7 servings/day (P = 0.001), yogurt consumption was 0.5 ± 0.6 and 0.4 ± 0.7 servings/day (P = 0.247), and cheese consumption was 0.4 ± 0.6 and 0.5 ± 0.8 servings/day (P = 0.081). After adjusting for age, birth weight, energy intake, protein, total fat, sugar, dietary fiber, total calcium intake, low-energy reporters, parental education, pubertal stage, and physical activity, only milk intake was negatively associated with BMI and %BF in girls (respectively, girls: β = −0.167, P = 0.013; boys: β = −0.019, P = 0.824 and girls: β = −0.143, P = 0.030; boys: β = −0.051, P = 0.548). Conclusion: We found an inverse association between milk intake and both BMI and %BF only in girls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atualmente a energia é considerada um vetor estratégico nas diversas organizações. Assim sendo, a gestão e a utilização racional da energia são consideradas instrumentos fundamentais para a redução dos consumos associados aos processos de produção do sector industrial. As ações de gestão energética não deverão ficar pela fase do projeto das instalações e dos meios de produção, mas sim acompanhar a atividade da Empresa. A gestão da energia deve ser sustentada com base na realização regular de diagnósticos energéticos às instalações consumidoras e concretizada através de planos de atuação e de investimento que apresentem como principal objetivo a promoção da eficiência energética, conduzindo assim à redução dos respetivos consumos e, consequentemente, à redução da fatura energética. Neste contexto, a utilização de ferramentas de apoio à gestão de energia promovem um consumo energético mais racional, ou seja, promovem a eficiência energética e é neste sentido que se insere este trabalho. O presente trabalho foi desenvolvido na Empresa RAR Açúcar e apresentou como principais objetivos: a reformulação do Sistema de Gestão de Consumos de Energia da Empresa, a criação de um modelo quantitativo que permitisse ao Gestor de Energia prever os consumos anuais de água, fuelóleo e eletricidade da Refinaria e a elaboração de um plano de consumos para o ano de 2014 a partir do modelo criado. A reformulação do respetivo Sistema de Gestão de Consumos resultou de um conjunto de etapas. Numa primeira fase foi necessário efetuar uma caraterização e uma análise do atual Sistema de Gestão de Consumos da Empresa, sistema composto por um conjunto de sete ficheiros de cálculo do programa Microsoft Excel©. Terminada a análise, selecionada a informação pertinente e propostas todas as melhorias a introduzir nos ficheiros, procedeu-se à reformulação do respetivo SGE, reduzindo-se o conjunto de ficheiros de cálculo para apenas dois ficheiros, um onde serão efetuados e visualizados todos os registos e outro onde serão realizados os cálculos necessários para o controlo energético da Empresa. O novo Sistema de Gestão de Consumos de Energia será implementado no início do ano de 2015. Relativamente às alterações propostas para as folhas de registos manuais, estas já foram implementadas pela Empresa. Esta aplicação prática mostrou-se bastante eficiente uma vez que permitiu grandes melhorias processuais nomeadamente, menores tempos de preenchimento das mesmas e um encurtamento das rotas efetuadas diariamente pelos operadores. Através do levantamento efetuado aos diversos contadores foi possível identificar todas as áreas onde será necessário a sua instalação e a substituição de todos os contadores avariados, permitindo deste modo uma contabilização mais precisa de todos os consumos da Empresa. Com esta reestruturação o Sistema de Gestão de Consumos tornou-se mais dinâmico, mais claro e, principalmente, mais eficiente. Para a criação do modelo de previsão de consumos da Empresa foi necessário efetuar-se um levantamento dos consumos históricos de água, eletricidade, fuelóleo e produção de açúcar de dois anos. Após este levantamento determinaram-se os consumos específicos de água, fuelóleo e eletricidade diários (para cada semana dos dois anos) e procedeu-se à caracterização destes consumos por tipo de dia. Efetuada a caracterização definiu-se para cada tipo de dia um consumo específico médio com base nos dois anos. O modelo de previsão de consumos foi criado com base nos consumos específicos médios dos dois anos correspondentes a cada tipo de dia. Procedeu-se por fim à verificação do modelo, comparando-se os consumos obtidos através do modelo (consumos previstos) com os consumos reais de cada ano. Para o ano de 2012 o modelo apresenta um desvio de 6% na previsão da água, 12% na previsão da eletricidade e de 6% na previsão do fuelóleo. Em relação ao ano de 2013, o modelo apresenta um erro de 1% para a previsão dos consumos de água, 8% para o fuelóleo e de 1% para a eletricidade. Este modelo permitirá efetuar contratos de aquisição de energia elétrica com maior rigor o que conduzirá a vantagens na sua negociação e consequentemente numa redução dos custos resultantes da aquisição da mesma. Permitirá também uma adequação dos fluxos de tesouraria à necessidade reais da Empresa, resultante de um modelo de previsão mais rigoroso e que se traduz numa mais-valia financeira para a mesma. Foi também proposto a elaboração de um plano de consumos para o ano de 2014 a partir do modelo criado em função da produção prevista para esse mesmo ano. O modelo apresenta um desvio de 24% na previsão da água, 0% na previsão da eletricidade e de 28% na previsão do fuelóleo.