149 resultados para Stochastic simulation algorithm
Resumo:
A survey was conducted among students of the Accounting and Administration undergraduate degree at ISCAP – IPP (School of Accounting and Administration of Polytechnic Institute of Porto) in order to understand their perception value of their course Business Simulation (BS). This course is provided in a business environment where students can learn by doing through the management of a company as they were in the real life, but risk-free. The learning tasks are provided in an action-oriented format to maximize the learning process. Students learn by doing a set of tasks every session and have also to produce reports and presentations during the course. BS is part of the undergraduate degree of Accounting and Administration at ISCAP – IPP since the beginning of 2003. The questionnaire we used captured the students’ perception about general and specific skills and competencies considered important for managers and accountants in the real life, about the methodology used in the course, which is totally different from the traditional form, and also about the adequacy of the course included as part of the undergraduate degree. The results showed that students’ perception is highly positive and almost all of them think they improve the skills needed for a job during the course. These results are consistent with [1] Adler and Milne’s research in which the authors found that students agree with the use of action-oriented learning tasks in order to provide them the needed attitudes, skills, and knowledge. The improvement of group skills is the most important issue for students, which can be understandable as BS is the only course from the degree in Accounting and Administration they really have to work in groups.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.
Resumo:
The design and development of simulation models and tools for Demand Response (DR) programs are becoming more and more important for adequately taking the maximum advantages of DR programs use. Moreover, a more active consumers’ participation in DR programs can help improving the system reliability and decrease or defer the required investments. DemSi, a DR simulator, designed and implemented by the authors of this paper, allows studying DR actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. DemSi considers the players involved in DR actions, and the results can be analyzed from each specific player point of view.
Resumo:
Renewable based power generation has significantly increased over the last years. However, this process has evolved separately from electricity markets, leading to an inadequacy of the present market models to cope with huge quantities of renewable energy resources, and to take full advantage of the presently existing and the increasing envisaged renewable based and distributed energy resources. This paper proposes the modelling of electricity markets at several levels (continental, regional and micro), taking into account the specific characteristics of the players and resources involved in each level and ensuring that the proposed models accommodate adequate business models able to support the contribution of all the resources in the system, from the largest to the smaller ones. The proposed market models are integrated in MASCEM (Multi- Agent Simulator of Competitive Electricity Markets), using the multi agent approach advantages for overcoming the current inadequacy and significant limitations of the presently existing electricity market simulators to deal with the complex electricity market models that must be adopted.
Resumo:
The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.
Resumo:
This paper presents the development of a solar photovoltaic (PV) model based on PSCAD/EMTDC - Power System Computer Aided Design – including a mathematical model study. An additional algorithm has been implemented in MATLAB software in order to calculate several parameters required by the PSCAD developed model. All the simulation study has been performed in PSCAD/MATLAB software simulation tool. A real data base concerning irradiance, cell temperature and PV power generation was used in order to support the evaluation of the implemented PV model.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in sophisticated tools very helpful under this context. Some simulation tools have already been developed, some of them very interesting. However, at the present state it is important to go a step forward in Electricity Markets simulators as this is crucial for facing changes in Power Systems. This paper explains the context and needs of electricity market simulation, describing the most important characteristics of available simulators. We present our work concerning MASCEM simulator, presenting its features as well as the improvements being made to accomplish the change and challenging reality of Electricity Markets.
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
In order to develop a flexible simulator, a variety of models for Ancillary Services (AS) negotiation has been implemented in MASCEM – a multi-agent system competitive electricity markets simulator. In some of these models, the energy and the AS are addressed simultaneously while in other models they are addressed separately. This paper presents an energy and ancillary services joint market simulation. This paper proposes a deterministic approach for solving the energy and ancillary services joint market. A case study based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve, and Non-Spinning Reserve services is used to demonstrate that the use of the developed methodology is suitable for solving this kind of optimization problem. The presented case study is based on CAISO real AS market data considers fifteen bids.
Resumo:
This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. Once obtained the system states by Monte Carlo simulation, a logical programming algorithm is applied to get all possible reconfigurations for every system state. In order to evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation a distribution power flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology to a practical case, the paper includes a case study that considers a real distribution network.
Resumo:
The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.