33 resultados para Space-time block code


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring is a very important aspect to consider when developing real-time systems. However, it is also important to consider the impact of the monitoring mechanisms in the actual application. The use of Reflection can provide a clear separation between the real-time application and the implemented monitoring mechanisms, which can be introduced (reflected) into the underlying system without changing the actual application part of the code. Nevertheless, controlling the monitoring system itself is still a topic of research. The monitoring mechanisms must contain knowledge about “how to get the information out”. Therefore, this paper presents the ongoing work to define a suitable strategy for monitoring real-time systems through the use of Reflection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute positioning – the real time satellite based positioning technique that relies solely on global navigation satellite systems – lacks accuracy for several real time application domains. To provide increased positioning quality, ground or satellite based augmentation systems can be devised, depending on the extent of the area to cover. The underlying technique – multiple reference station differential positioning – can, in the case of ground systems, be further enhanced through the implementation of the virtual reference station concept. Our approach is a ground based system made of a small-sized network of three stations where the concept of virtual reference station was implemented. The stations provide code pseudorange corrections, which are combined using a measurement domain approach inversely proportional to the distance from source station to rover. All data links are established trough the Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic parallel scheduling using work-stealing has gained popularity in academia and industry for its good performance, ease of implementation and theoretical bounds on space and time. Cores treat their own double-ended queues (deques) as a stack, pushing and popping threads from the bottom, but treat the deque of another randomly selected busy core as a queue, stealing threads only from the top, whenever they are idle. However, this standard approach cannot be directly applied to real-time systems, where the importance of parallelising tasks is increasing due to the limitations of multiprocessor scheduling theory regarding parallelism. Using one deque per core is obviously a source of priority inversion since high priority tasks may eventually be enqueued after lower priority tasks, possibly leading to deadline misses as in this case the lower priority tasks are the candidates when a stealing operation occurs. Our proposal is to replace the single non-priority deque of work-stealing with ordered per-processor priority deques of ready threads. The scheduling algorithm starts with a single deque per-core, but unlike traditional work-stealing, the total number of deques in the system may now exceed the number of processors. Instead of stealing randomly, cores steal from the highest priority deque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work focuses on highly dynamic distributed systems with Quality of Service (QoS) constraints (most importantly real-time constraints). To that purpose, real-time applications may benefit from code offloading techniques, so that parts of the application can be offloaded and executed, as services, by neighbour nodes, which are willing to cooperate in such computations. These applications explicitly state their QoS requirements, which are translated into resource requirements, in order to evaluate the feasibility of accepting other applications in the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the chromosome information of twenty five species, namely, mammals, fishes, birds, insects, nematodes, fungus, and one plant. A quantifying scheme inspired in the state space representation of dynamical systems is formulated. Based on this algorithm, the information of each chromosome is converted into a bidimensional distribution. The plots are then analyzed and characterized by means of Shannon entropy. The large volume of information is integrated by averaging the lengths and entropy quantities of each species. The results can be easily visualized revealing quantitative global genomic information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiprocessors, particularly in the form of multicores, are becoming standard building blocks for executing reliable software. But their use for applications with hard real-time requirements is non-trivial. Well-known realtime scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Earliest-Deadline-First [1]) do not perform well on multiprocessors. For this reason the scientific community in the area of real-time systems has produced new algorithms specifically for multiprocessors. In the meanwhile, a proposal [2] exists for extending the Ada language with new basic constructs which can be used for implementing new algorithms for real-time scheduling; the family of task splitting algorithms is one of them which was emphasized in the proposal [2]. Consequently, assessing whether existing task splitting multiprocessor scheduling algorithms can be implemented with these constructs is paramount. In this paper we present a list of state-of-art task-splitting multiprocessor scheduling algorithms and, for each of them, we present detailed Ada code that uses the new constructs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing work in the context of energy management for real-time systems often ignores the substantial cost of making DVFS and sleep state decisions in terms of time and energy and/or assume very simple models. Within this paper we attempt to explore the parameter space for such decisions and possible constraints faced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Typically common embedded systems are designed with high resource constraints. Static designs are often chosen to address very specific use cases. On contrast, a dynamic design must be used if the system must supply a real-time service where the input may contain factors of indeterminism. Thus, adding new functionality on these systems is often accomplished by higher development time, tests and costs, since new functionality push the system complexity and dynamics to a higher level. Usually, these systems have to adapt themselves to evolving requirements and changing service requests. In this perspective, run-time monitoring of the system behaviour becomes an important requirement, allowing to dynamically capturing the actual scheduling progress and resource utilization. For this to succeed, operating systems need to expose their internal behaviour and state, making it available to the external applications, usually using a run-time monitoring mechanism. However, such mechanism can impose a burden in the system itself if not wisely used. In this paper we explore this problem and propose a framework, which is intended to provide this run-time mechanism whilst achieving code separation, run-time efficiency and flexibility for the final developer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamically reconfigurable systems have benefited from a new class of FPGAs recently introduced into the market, which allow partial and dynamic reconfiguration at run-time, enabling multiple independent functions from different applications to share the same device, swapping resources as needed. When the sequence of tasks to be performed is not predictable, resource allocation decisions have to be made on-line, fragmenting the FPGA logic space. A rearrangement may be necessary to get enough contiguous space to efficiently implement incoming functions, to avoid spreading their components and, as a result, degrading their performance. This paper presents a novel active replication mechanism for configurable logic blocks (CLBs), able to implement on-line rearrangements, defragmenting the available FPGA resources without disturbing those functions that are currently running.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconfigurable computing experienced a considerable expansion in the last few years, due in part to the fast run-time partial reconfiguration features offered by recent SRAM-based Field Programmable Gate Arrays (FPGAs), which allowed the implementation in real-time of dynamic resource allocation strategies, with multiple independent functions from different applications sharing the same logic resources in the space and temporal domains. However, when the sequence of reconfigurations to be performed is not predictable, the efficient management of the logic space available becomes the greatest challenge posed to these systems. Resource allocation decisions have to be made concurrently with system operation, taking into account function priorities and optimizing the space currently available. As a consequence of the unpredictability of this allocation procedure, the logic space becomes fragmented, with many small areas of free resources failing to satisfy most requests and so remaining unused. A rearrangement of the currently running functions is therefore necessary, so as to obtain enough contiguous space to implement incoming functions, avoiding the spreading of their components and the resulting degradation of system performance. A novel active relocation procedure for Configurable Logic Blocks (CLBs) is herein presented, able to carry out online rearrangements, defragmenting the available FPGA resources without disturbing functions currently running.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

20th International Conference on Reliable Software Technologies - Ada-Europe 2015 (Ada-Europe 2015), 22 to 26, Jun, 2015, Madrid, Spain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 30th ACM/SIGAPP Symposium On Applied Computing (SAC 2015). 13 to 17, Apr, 2015, Embedded Systems. Salamanca, Spain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France. Best Paper Award Nominee