81 resultados para Slot-based task-splitting algorithms
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
As novas tecnologias aplicadas ao processamento de imagem e reconhecimento de padrões têm sido alvo de um grande progresso nas últimas décadas. A sua aplicação é transversal a diversas áreas da ciência, nomeadamente a área da balística forense. O estudo de evidências (invólucros e projeteis) encontradas numa cena de crime, recorrendo a técnicas de processamento e análise de imagem, é pertinente pelo facto de, aquando do disparo, as armas de fogo imprimirem marcas únicas nos invólucros e projéteis deflagrados, permitindo relacionar evidências deflagradas pela mesma arma. A comparação manual de evidências encontradas numa cena de crime com evidências presentes numa base de dados, em termos de parâmetros visuais, constitui uma abordagem demorada. No âmbito deste trabalho pretendeu-se desenvolver técnicas automáticas de processamento e análise de imagens de evidências, obtidas através do microscópio ótico de comparação, tendo por base algoritmos computacionais. Estes foram desenvolvidos com recurso a pacotes de bibliotecas e a ferramentas open-source. Para a aquisição das imagens de evidências balísticas foram definidas quatro modalidades de aquisição: modalidade Planar, Multifocus, Microscan e Multiscan. As imagens obtidas foram aplicados algoritmos de processamento especialmente desenvolvidos para o efeito. A aplicação dos algoritmos de processamento permite a segmentação de imagem, a extração de características e o alinhamento de imagem. Este último tem como finalidade correlacionar as evidências e obter um valor quantitativo (métrica), indicando o quão similar essas evidências são. Com base no trabalho desenvolvido e nos resultados obtidos, foram definidos protocolos de aquisição de imagens de microscopia, que possibilitam a aquisição de imagens das regiões passiveis de serem estudadas, assim como algoritmos que permitem automatizar o posterior processo de alinhamento de imagens de evidências, constituindo uma vantagem em relação ao processo de comparação manual.
Resumo:
The Rural Postman Problem (RPP) is a particular Arc Routing Problem (ARP) which consists of determining a minimum cost circuit on a graph so that a given subset of required edges is traversed. The RPP is an NP-hard problem with significant real-life applications. This paper introduces an original approach based on Memetic Algorithms - the MARP algorithm - to solve the RPP and, also deals with an interesting Industrial Application, which focuses on the path optimization for component cutting operations. Memetic Algorithms are a class of Metaheuristics which may be seen as a population strategy that involves cooperation and competition processes between population elements and integrates “social knowledge”, using a local search procedure. The MARP algorithm is tested with different groups of instances and the results are compared with those gathered from other publications. MARP is also used in the context of various real-life applications.
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Resumo:
Multicore platforms have transformed parallelism into a main concern. Parallel programming models are being put forward to provide a better approach for application programmers to expose the opportunities for parallelism by pointing out potentially parallel regions within tasks, leaving the actual and dynamic scheduling of these regions onto processors to be performed at runtime, exploiting the maximum amount of parallelism. It is in this context that this paper proposes a scheduling approach that combines the constant-bandwidth server abstraction with a priority-aware work-stealing load balancing scheme which, while ensuring isolation among tasks, enables parallel tasks to be executed on more than one processor at a given time instant.
Resumo:
Scheduling of constrained deadline sporadic task systems on multiprocessor platforms is an area which has received much attention in the recent past. It is widely believed that finding an optimal scheduler is hard, and therefore most studies have focused on developing algorithms with good processor utilization bounds. These algorithms can be broadly classified into two categories: partitioned scheduling in which tasks are statically assigned to individual processors, and global scheduling in which each task is allowed to execute on any processor in the platform. In this paper we consider a third, more general, approach called cluster-based scheduling. In this approach each task is statically assigned to a processor cluster, tasks in each cluster are globally scheduled among themselves, and clusters in turn are scheduled on the multiprocessor platform. We develop techniques to support such cluster-based scheduling algorithms, and also consider properties that minimize total processor utilization of individual clusters. In the last part of this paper, we develop new virtual cluster-based scheduling algorithms. For implicit deadline sporadic task systems, we develop an optimal scheduling algorithm that is neither Pfair nor ERfair. We also show that the processor utilization bound of us-edf{m/(2m−1)} can be improved by using virtual clustering. Since neither partitioned nor global strategies dominate over the other, cluster-based scheduling is a natural direction for research towards achieving improved processor utilization bounds.
Resumo:
Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.
Resumo:
The goal of this study was to propose a new functional magnetic resonance imaging (fMRI) paradigm using a language-free adaptation of a 2-back working memory task to avoid cultural and educational bias. We additionally provide an index of the validity of the proposed paradigm and test whether the experimental task discriminates the behavioural performances of healthy participants from those of individuals with working memory deficits. Ten healthy participants and nine patients presenting working memory (WM) deficits due to acquired brain injury (ABI) performed the developed task. To inspect whether the paradigm activates brain areas typically involved in visual working memory (VWM), brain activation of the healthy participants was assessed with fMRIs. To examine the task's capacity to discriminate behavioural data, performances of the healthy participants in the task were compared with those of ABI patients. Data were analysed with GLM-based random effects procedures and t-tests. We found an increase of the BOLD signal in the specialized areas of VWM. Concerning behavioural performances, healthy participants showed the predicted pattern of more hits, less omissions and a tendency for fewer false alarms, more self-corrected responses, and faster reaction times, when compared with subjects presenting WM impairments. The results suggest that this task activates brain areas involved in VWM and discriminates behavioural performances of clinical and non-clinical groups. It can thus be used as a research methodology for behavioural and neuroimaging studies of VWM in block-design paradigms.
Resumo:
Presented at IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015.
Resumo:
This paper presents a Swarm based Cooperation Mechanism for scheduling optimization. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to support decision making in agile manufacturing environments. Agents coordinate their actions automatically without human supervision considering a common objective – global scheduling solution taking advantages from collective behavior of species through implicit and explicit cooperation. The performance of the cooperation mechanism will be evaluated consider implicit cooperation at first stage through ACS, PSO and ABC algorithms and explicit through cooperation mechanism application.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. Each agent has the knowledge about a different method for defining a strategy for playing in the market, the main agent chooses the best among all those, and provides it to the market player that requests, to be used in the market. This paper also presents a methodology to manage the efficiency/effectiveness balance of this method, to guarantee that the degradation of the simulator processing times takes the correct measure.
Resumo:
This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.