86 resultados para Shading losses
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
Locational Marginal Prices (LMP) are important pricing signals for the participants of competitive electricity markets, as the effects of transmission losses and binding constraints are embedded in LMPs [1],[2]. This paper presents a software tool that evaluates the nodal marginal prices considering losses and congestion. The initial dispatch is based on all the electricity transactions negotiated in the pool and in bilateral contracts. It must be checked if the proposed initial dispatch leads to congestion problems; if a congestion situation is detected, it must be solved. An AC power flow is used to verify if there are congestion situations in the initial dispatch. Whenever congestion situations are detected, they are solved and a feasible dispatch (re-dispatch) is obtained. After solving the congestion problems, the simulator evaluates LMP. The paper presents a case study based on the the 118 IEEE bus test network.
Resumo:
This paper presents a methodology to address reactive power compensation using Evolutionary Particle Swarm Optimization (EPSO) technique programmed in the MATLAB environment. The main objective is to find the best operation point minimizing power losses with reactive power compensation, subjected to all operational constraints, namely full AC power flow equations, active and reactive power generation constraints. The methodology has been tested with the IEEE 14 bus test system demonstrating the ability and effectiveness of the proposed approach to handle the reactive power compensation problem.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Total petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.
Resumo:
Mestrado em Engenharia Química
Resumo:
Mestrado em Engenharia Química. Ramo optimização energética na indústria química.
Resumo:
A Indústria Têxtil do Ave S.A. (ITA) dedica-se, desde 1948, à produção de componentes têxteis para pneus em forma de fio torcido (corda) e tela. Estes componentes são quimicamente activados e impregnados em estufas, possibilitando assim a posterior adesão ao pneu. A máquina de impregnar corda Single End é composta pelos grupos de estiragem, por um recipiente contendo a solução química e por 4 estufas em série. A máquina de impregnar tela Zell é composta pelos grupos de estiragem, pelos acumuladores de saída e entrada, pelos recipientes com as soluções químicas e por um grupo de 7 estufas em série. O aquecimento das estufas é feito através da queima de gás natural. O presente trabalho teve como objectivo a realização de uma auditoria energética à ITA com um especial destaque às máquinas de impregnar corda (Single End) e tela (Zell). As correntes de entrada que contribuem para a potência térmica de impregnação são a combustão do gás natural, o ar de combustão, o ar fresco, o artigo em verde e as soluções químicas. As correntes de saída correspondem aos gases de combustão e exaustão, ao artigo impregnado e às perdas térmicas. A auditoria à máquina Single End mostrou que a potência térmica de impregnação é de 413,1 kW. Dessa potência térmica, 77,2% correspondem à combustão do gás natural, 6,7% ao ar de combustão, 15% ao ar fresco, 0,7% às cordas em verde e 0,4% à solução química. Da potência térmica de saída, 88,4% correspondem aos gases de combustão e exaustão, 3,2% às cordas impregnadas e 8,4% às perdas térmicas. Da auditoria à máquina Zell observou-se que a potência térmica de impregnação é de 5630,7 kW. Dessa potência, 73,3% corresponde à combustão do gás natural, 1,6% ao ar de combustão, 24,5% ao ar fresco, 0,3% à tela em verde e 0,3% às soluções químicas. Da potência térmica de saída, 65,2% correspondem aos gases de combustão e exaustão, 3,1% à tela impregnada e 31,7% às perdas térmicas. Foram sugeridas como medidas de optimização a redução dos caudais de exaustão das estufas e o aumento de temperatura do ar fresco. O aumento da temperatura do ar fresco da máquina de impregnar Single End para 50 ºC, usando ar quente dos torcedores, leva a uma poupança de 0,22 €/h, com um período de retorno do investimento de 13 anos e 4 meses enquanto o aumento para 120 ºC, usando o calor dos gases de combustão e exaustão, reduz os custos em 0,88 €/h, sendo o período de retorno para esse investimento de 2 anos e 6 meses. Na máquina de impregnar Zell, uma redução de 15% no caudal de exaustão numa das estufas leva a ganhos de 3,43 €/h. O aumento de temperatura do ar fresco para 45 ºC, usando o calor de gases de combustão e exaustão, leva a uma poupança de 9,93 €/h sendo o período de retorno para cada uma das duas sugestões de investimento de 5 meses e 9 meses.
Resumo:
Este trabalho surgiu no âmbito da Tese de Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química, aliando a necessidade da Empresa Monteiro Ribas – Indústrias, S.A. em resolver alguns problemas relacionados com as estufas da unidade J da fábrica de revestimentos. Outro dos objectivos era propor melhorias de eficiência energética neste sector da empresa. Para tal, foi necessário fazer um levantamento energético de toda a unidade, o que permitiu verificar que as estufas de secagem (Recobrimento 1 e 2) seriam o principal objecto de estudo. O levantamento energético da empresa permitiu conhecer o seu consumo anual de energia de 697,9 tep, o que a classifica, segundo o Decreto-lei nº 71 de 15 de Abril de 2008, como Consumidora Intensiva de Energia (CIE). Além disso, as situações que devem ser alvo de melhoria são: a rede de termofluido, que apresenta válvulas sem isolamento, o sistema de iluminação, que não é o mais eficiente e a rede de distribuição de ar comprimido, que não tem a estrutura mais adequada. Desta forma sugere-se que a rede de distribuição de termofluido passe a ter válvulas isoladas com lã de rocha, o investimento total é de 2.481,56 €, mas a poupança pode ser de 21.145,14 €/ano, com o período de retorno de 0,12 anos. No sistema de iluminação propõe-se a substituição dos balastros normais por electrónicos, o investimento total é de 13.873,74 €, mas a poupança é de 2.620,26 €/ano, com período de retorno de 5 anos. No processo de secagem das linhas de recobrimento mediram-se temperaturas de todos os seus componentes, velocidades de ar o que permitiu conhecer a distribuição do calor fornecido pelo termofluido. No Recobrimento 1, o ar recebe entre 39 a 51% do calor total, a tela recebe cerca de 25% e na terceira estufa este é apenas de 6%. Nesta linha as perdas de calor por radiação oscilam entre 6 e 11% enquanto as perdas por convecção representam cerca de 17 a 44%. Como o calor que a tela recebe é muito inferior ao calor recebido pelo ar no Recobrimento 1, propõe-se uma redução do caudal de ar que entra na estufa, o que conduzirá certamente à poupança de energia térmica. No Recobrimento 2 o calor fornecido ao ar representa cerca de 51 a 77% do calor total e o cedido à tela oscila entre 2 e 3%. As perdas de calor por convecção oscilam entre 12 e 26%, enquanto que as perdas por radiação têm valores entre 4 e 8%. No que diz respeito ao calor necessário para evaporar os solventes este oscila entre os 4 e 13%. Os balanços de massa e energia realizados ao processo de secagem permitiram ainda determinar o rendimento das 3 estufas do Recobrimento 1, com 36, 47 e 24% paras as estufa 1, 2 e 3, respectivamente. No Recobrimento 2 os valores de rendimento foram superiores, tendo-se obtido valores próximos dos 41, 81 e 88%, para as estufas 1, 2 e 3, respectivamente. Face aos resultados obtidos propõem-se a reengenharia do processo introduzindo permutadores compactos para aquecer o ar antes de este entrar nas estufas. O estudo desta alteração foi apenas realizado para a estufa 1 do Recobrimento 1, tendo-se obtido uma área de transferência de calor de 6,80 m2, um investimento associado de 8.867,81 €. e uma poupança de 708,88 €/ano, com um período de retorno do investimento de 13 anos. Outra sugestão consiste na recirculação de parte do ar de saída (5%), que conduz à poupança de 158,02 €/ano. Estes valores, pouco significativos, não estimulam a adopção das referidas sugestões.
Resumo:
Como o sector cerâmico é um consumidor intensivo de energia, este trabalho teve como objectivo principal a elaboração de um plano de optimização do desempenho energético da olaria número três da Fábrica Cerâmica de Valadares. Para o efeito, efectuou-se o levantamento energético desta fracção autónoma. O valor total obtido para os ganhos térmicos foi de 8,7x107 kJ/dia, sendo 82% desta energia obtida na combustão do gás natural. Por outro lado, as perdas energéticas rondam os 8,2x107 kJ/dia, sendo o ar de exaustão e a envolvente os principais responsáveis, com um peso de 42 % e 38%, respectivamente. Tendo em conta estes valores, estudaram-se várias medidas de isolamento da cobertura, pavimento, paredes e saída de ar através de fendas do edifício. No caso do isolamento da cobertura sugeriu-se a substituição das telhas de fibrocimento e do isolamento actualmente existentes por painéis sandwich de cobertura. Esta acção permite uma poupança de 64.796€/ano, com um investimento de 57.029€ e o seu período de retorno de 0,9 anos. O Valor Actualizado Líquido (VAL) no 5º ano foi de 184.069€, com uma Taxa Interna de Rentabilidade (TIR) de 92%. Para isolar o pavimento, sugeriu-se a utilização de placas de poliuretano expandido (PU) de 20mm de espessura. Assim, consegue-se uma poupança de 7.442 €/ano, com um investimento de 21.708€, e um tempo de retorno 2,9 anos. No final do 5º ano de vida útil do projecto, o VAL é de 4.070€ e a TIR 7%. Relativamente ao isolamento das paredes e pilares, sugeriu-se a utilização de placas de PU (30mm), recobertas com chapa de ferro galvanizado. O tempo de retorno do investimento é de 1,5 anos, uma vez que, o investimento é de 13.670€ e a poupança anual será de 9.183€. Esta solução apresenta no último ano um VAL de 12.835€ e uma TIR de 22%. No isolamento das fendas do edifício, sugeriu-se a redução de 20% da sua área livre. Esta medida de optimização implica um investimento de 8.000€, revelando-se suficientemente eficaz, pois apresenta um tempo de retorno de 0,67 anos. O VAL e a TIR da solução no último ano de vida útil do projecto de investimento são de 36.835€ e 35%, respectivamente. Por fim, sugeriu-se ainda a instalação de um sistema de controlo que visa o aproveitamento de ar quente proveniente do forno, instalado no piso inferior à olaria, para pré-aquecer o ar alimentado aos geradores de calor. Esta medida implicaria um investimento de 4.000€, com um tempo de retorno de 2,4 anos e uma poupança anual é de 1.686€. O investimento é aconselhável, já que, no 5º ano, o VAL é de 1.956€ e a TIR é de 17%.
Resumo:
Os objectivos principais deste estudo são a caracterização de uma das linhas de extrusão existentes na Cabelte, nomeadamente a linha de extrusão de referência EP5, composta por duas extrusoras. Pretende-se fazer a determinação de indicadores energéticos e de processo e a optimização do consumo energético, no que diz respeito à energia consumida e às perdas térmicas relativas a esta linha. Para fazer a monitorização da linha de extrusão EP5 foi colocado no quadro geral dessa linha um equipamento central de medida de forma a ser possível a sua monitorização. No entanto, para a extrusora auxiliar as medições foram efectuadas com uma pinça amperimétrica e um fasímetro. Foram também efectuados ensaios onde foi avaliada a quantidade de material transformada, para isso foi utilizado um equipamento de pesagem, doseador gravimétrico aplicado nas extrusoras. As medições de temperatura para os cálculos das perdas térmicas da extrusora principal e para a caracterização dos materiais plásticos, foram efectuadas utilizando um termómetro digital. Foram efectuados ensaios de débito às extrusoras auxiliar e principal e foi estudada a variação do factor de potência em função da rotação do fuso. Na perspectiva do utilizador final a optimização para a utilização racional de energia está na redução de encargos da factura de energia eléctrica. Essa factura não depende só da quantidade mas também do modo temporal como se utiliza essa energia, principalmente a energia eléctrica, bastante dependente do período em que é consumida. Uma metodologia diferente no planeamento da produção, contemplando o fabrico dos cabos com maior custo específico nas horas de menor custo energético, implicaria uma redução dos custos específicos de 18,7% para o horário de verão e de 20,4% para o horário de inverno. Os materiais de revestimento utilizados (PE e PVC), influenciam directamente os custos energéticos, uma vez que o polietileno (PE) apresenta sempre valores de entalpia superiores (0,317 kWh/kg e 0,281 kWh/kg)) e necessita de temperaturas de trabalho mais elevadas do que o policloreto de vinilo (PVC) (0,141 kWh/kg e 0,124 kWh/kg). O consumo específico tendencialmente diminui à medida que aumenta a rotação do fuso, até se atingir o valor de rotação óptimo, a partir do qual esta tendência se inverte. O cosφ para as duas extrusoras em estudo, aumenta sempre com o aumento de rotação do fuso. Este estudo permitiu avaliar as condições óptimas no processo de revestimento dos cabos, de forma a minimizarmos os consumos energéticos. A redução de toda a espécie de desperdícios (sobre consumos, desperdício em purgas) é uma prioridade de gestão que alia também a eficácia à eficiência, e constitui uma ferramenta fundamental para assegurar o futuro da empresa. O valor médio lido para o factor de potência (0,38) da linha EP5, valor extremamente baixo e que vem associado à energia reactiva, além do factor económico que lhe está inerente, condiciona futuras ampliações. A forma de se corrigir o factor de potência é instalando uma bateria de condensadores de 500 kVAr. Considerando o novo sistema tarifário aplicado à energia reactiva, vamos ter um ganho de 36167,4 Euro/ano e o período de retorno de investimento é de 0,37 ano (4,5 meses). Esta medida implica também uma redução anual na quantidade de CO2 emitida de 6,5%. A quantificação das perdas térmicas é importante, pois só desta forma se podem definir modos de actuação de forma a aumentar a eficiência energética. Se não existir conhecimento profundo dos processos e metodologias correctas, não podem existir soluções eficientes, logo é importante medir antes de avançar com qualquer medida de gestão.
Resumo:
Na indústria cerâmica o consumo de energia é elevado, fazendo com que este custo represente uma parte significativa dos custos totais de produção das peças. De forma a diminuir esta dependência, a energia deve ser gerida de forma contínua e eficazmente. O presente trabalho consistiu na análise da situação energética e na elaboração de propostas de optimização da etapa de conformação que ocorre na Olaria número quatro da Fábrica Cerâmica de Valadares, S.A. Determinou-se o rendimento efectivo da Olaria, tendo-se obtido um valor de 24,7%. As perdas térmicas ocorrem na Olaria, a nível da envolvente, da ventilação, da exaustão de gases e da inércia térmica, representando, respectivamente, 18122 MJ, 50222 MJ, 39228 MJ e 4338 MJ por semana de trabalho. Numa última fase sugeriram-se algumas medidas de optimização energética. A primeira medida visa uma melhoria na manutenção dos geradores, um aumento na gama de temperaturas de funcionamento dos geradores e uma minimização dos tempos de abertura dos portões. Na segunda medida propõe-se a diminuição da percentagem de excesso de ar para 10%, equivalendo a uma poupança de 8839 €/ano. Na terceira medida avaliou-se a possibilidade da aplicação de um permutador de calor de modo a aproveitar os gases de combustão. Esta permitiria uma poupança de 119 €/ano, no entanto, devido ao elevado tempo de retorno do investimento (12,6 anos) considerou-se que esta medida não era viável. A quarta proposta relaciona-se com a optimização da ventilação da Olaria por aumento do ciclo de renovação de ar para 5 h, promovendo uma poupança de 8583 € anuais. Como última sugestão de optimização, aconselhou-se a diminuição do volume da olaria em 6935 m3. Com esta proposta é possível obter uma poupança de 4993 €/ano. Esta medida envolve um investimento de 12000 €, sendo o tempo de retorno do investimento de 2,4 anos. Das cinco propostas estudadas concluiu-se que quatro são viáveis permitindo uma melhoria do funcionamento da Olaria e uma poupança significativa na factura energética.
Resumo:
Este trabalho teve como propósito fazer uma avaliação do desempenho energético e da qualidade do ar no interior das instalações de uma Piscina Municipal Coberta, localizada na zona norte de Portugal, sendo estabelecidos os seguintes objetivos: caracterização geral da piscina, no que respeita aos seus diferentes espaços e equipamentos, cálculo dos consumos térmicos e elétricos bem como o registo das concentrações de elementos poluentes para controlo da qualidade do ar no interior da piscina, tendo como base a legislação atualmente em vigor. A caracterização geral da piscina permitiu verificar algumas inconformidades como a temperatura da água nos tanques de natação que tem valores superiores aos recomendados e a sala de primeiros socorros que não possui acesso direto ao exterior. Acrescente-se que o pavimento nos chuveiros da casa de banho feminina e os valores de pH para água do tanque grande e pequeno não estão sempre dentro da gama de recomendação. O caudal da renovação de ar está a ser operado manualmente e quando está a funcionar a 50% da sua capacidade máxima, que acontece numa parte do dia, apenas consegue renovar 77,5% do caudal recomendado pelo RSECE. Para se obter o valor recomendado é necessário ter pelo menos 7 horas com o caudal a 100% da capacidade máxima. A avaria na UTA2 originou que 40% dos registos diários da humidade relativa interior estivessem fora da gama de valores recomendados e que esta é fortemente dependente da humidade no exterior e pode ser agravada quando as portas dos envidraçados da nave são abertas. Analisando ainda a quantidade de água removida na desumidificação do ar com a água evaporada em condições de Outono-Inverno ou Primavera-Verão, este estudo permitiu concluir que todas as combinações demonstraram a necessidade de desumidificação salvo a combinação Outono-Inverno e UTA2 a funcionar a 100% da sua capacidade máxima. Os isolamentos das tubagens na sala das caldeiras foram observados e comparados com as soluções recomendadas pelas empresas especialistas e verificou-se que alguns estão mal colocados com parcial ou total degradação, promovendo perdas térmicas. No caso das perdas calorificas por evaporação, estas representaram cerca de 67,78% das perdas totais. Como tal, estudou-se a aplicação de uma cobertura sobre o plano de água durante o período de inatividade da piscina (8 horas) e verificou-se que o resultado seria uma poupança de 654,8 kWh/dia, na ausência de evaporação da água, mais 88,00 kWh/dia do período da UTA2 a funcionar a 50% da sua capacidade, perfazendo um total de 742,8 kWh/dia. A aplicação da cobertura permite obter um VAL de valor positivo, uma TIR de 22,77% e sendo este valor superior ao WACC (Weight Average Cost of Capital), o projeto torna-se viável com um Pay-Back de 3,17 anos. Caracterizou-se também o consumo total diário em eletricidade, e verificou-se que as unidades de climatização, as bombas de circulação de água, a iluminação, e outros equipamentos representam, respetivamente, cerca de 67,81, 25,26, 2,68 e 3,91% da energia elétrica total consumida. Por fim, a análise à qualidade do ar no interior da nave em Maio e Setembro identificou que as concentrações de ozono apresentavam valores no limite do aceitável em Maio e superiores ao valor de emissão em Setembro. Os compostos orgânicos voláteis também apresentavam valores em Maio 4,98 vezes superior e em Setembro 6,87 vezes superior aos valores máximos exigidos pelo D.L. nº 79/2006. Houve ainda altas concentrações de radão registadas na casa dos filtros, em Maio com um valor 11,49 vezes superior, no entanto esse valor desceu em Setembro para 1,08 vezes, mesmo assim superior ao exigido pelo D.L. nº 79/2006.