53 resultados para Service planning
Resumo:
Smartphones and other internet enabled devices are now common on our everyday life, thus unsurprisingly a current trend is to adapt desktop PC applications to execute on them. However, since most of these applications have quality of service (QoS) requirements, their execution on resource-constrained mobile devices presents several challenges. One solution to support more stringent applications is to offload some of the applications’ services to surrogate devices nearby. Therefore, in this paper, we propose an adaptable offloading mechanism which takes into account the QoS requirements of the application being executed (particularly its real-time requirements), whilst allowing offloading services to several surrogate nodes. We also present how the proposed computing model can be implemented in an Android environment
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.
Resumo:
Wireless sensor networks (WSNs) are one of today’s most prominent instantiations of the ubiquituous computing paradigm. In order to achieve high levels of integration, WSNs need to be conceived considering requirements beyond the mere system’s functionality. While Quality-of-Service (QoS) is traditionally associated with bit/data rate, network throughput, message delay and bit/packet error rate, we believe that this concept is too strict, in the sense that these properties alone do not reflect the overall quality-ofservice provided to the user/application. Other non-functional properties such as scalability, security or energy sustainability must also be considered in the system design. This paper identifies the most important non-functional properties that affect the overall quality of the service provided to the users, outlining their relevance, state-of-the-art and future research directions.
Resumo:
In this paper we propose a framework for the support of mobile application with Quality of Service (QoS) requirements, such as voice or video, capable of supporting distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
In heterogeneous environments, diversity of resources among the devices may affect their ability to perform services with specific QoS constraints, and drive peers to group themselves in a coalition for cooperative service execution. The dynamic selection of peers should be influenced by user’s QoS requirements as well as local computation availability, tailoring provided service to user’s specific needs. However, complex dynamic real-time scenarios may prevent the possibility of computing optimal service configurations before execution. An iterative refinement approach with the ability to trade off deliberation time for the quality of the solution is proposed. We state the importance of quickly finding a good initial solution and propose heuristic evaluation functions that optimise the rate at which the quality of the current solution improves as the algorithms have more time to run.
Resumo:
A QoS adaptation to dynamically changing system conditions that takes into consideration the user’s constraints on the stability of service provisioning is presented. The goal is to allow the system to make QoS adaptation decisions in response to fluctuations in task traffic flow, under the control of the user. We pay special attention to the case where monitoring the stability period and resource load variation of Service Level Agreements for different types of services is used to dynamically adapt future stability periods, according to a feedback control scheme. System’s adaptation behaviour can be configured according to a desired confidence level on future resource usage. The viability of the proposed approach is validated by preliminary experiments.
Resumo:
The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic distributed environments where the characteristics of the computational load cannot always be predicted in advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing power. Rather than assuming that the dynamic configuration of this cooperative service executes until it computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves at each iteration, with an overhead that can be considered negligible.
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
The goal of this paper is to discuss the benefits and challenges of yielding an inter-continental network of remote laboratories supported and used by both European and Latin American Institutions of Higher Education. Since remote experimentation, understood as the ability to carry out real-world experiments through a simple Web browser, is already a proven solution for the educational community as a supplement to on-site practical lab work (and in some cases, namely for distance learning courses, a replacement to that work), the purpose is not to discuss its technical, pedagogical, or economical strengths, but rather to raise and try to answer some questions about the underlying benefits and challenges of establishing a peer-to-peer network of remote labs. Ultimately, we regard such a network as a constructive mechanism to help students gain the working and social skills often valued by multinational/global companies, while also providing awareness of local cultural aspects.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.
Resumo:
A reforma dos cuidados de saúde primários (CSP), iniciada em 2005, visa melhorar o desempenho dos centros de saúde através da reorganização dos serviços em várias unidades funcionais, no sentido de resolver os problemas tendo em conta as necessidades a satisfazer, complementando-se entre si e assumindo compromissos de acessibilidade e qualidade nos cuidados de saúde prestados. Ao mesmo tempo, são criados órgãos de gestão e governação clínica que nunca antes existiram nos CSP, envolvendo a participação da comunidade. A optimização da gestão e da governação clínica permitiu organizar os serviços de saúde em Agrupamentos de Centros de Saúde (AGES), dando-lhes poderes e responsabilidades para solucionarem problemas e tomarem as decisões acertadas e céleres, já que conhecem melhor as necessidades de saúde das populações. As relações burocráticas são substituídas por relações de contratualidade, orientadas para obter melhores resultados em saúde. Partindo destes pressupostos, o estudo realizado pretende analisar a percepção de profissionais de saúde quanto à política de humanização dos CSP, bem como, identificar/construir indicadores que avaliem essa política, sendo um estudo de carácter exploratório e descritivo, à luz de uma abordagem qualitativa. Participaram neste estudo cinco profissionais de saúde da Administração Regional de Saúde (ARS) do Norte, lP, do Departamento de Contratualização, Departamento de Estudos e Planeamento da ARS Norte e do AGES Tâmega 11 - Vale Sousa Sul, seleccionados por conveniência e inquiridos por entrevista semi-estruturada. Os dados foram tratados através da análise de conteúdo com o apoio informático NVivo9. Os resultados apresentados, com base nas entrevistas realizadas aos participantes no estudo, sustentam que os actuais indicadores quantitativos contratualizados com as unidades funcionais, expressam a política de humanização num serviço de saúde, não coincidindo totalmente com as definições internacionais expressas neste estudo.
Resumo:
Learning management systems are routinely used for presenting, solving and grading exercises with large classes. However, teachers are constrained to use questions with pre-defined answers, such as multiple-choice, to automatically correct the exercises of their students. Complex exercises cannot be evaluated automatically by the LMS and require the coordination of a set of heterogeneous systems. For instance, programming exercises require a specialized exercise resolution environment and automatic evaluation features, each provided by a different type of system. In this paper, the authors discuss an approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach is based on a pivot component embedded in the LMS and has two main roles: 1) provide an exercise resolution environment, and 2) coordinate communication between the LMS and other systems, exposing their functions as web services. The integration of the pivot component in the LMS relies on Learning Tools Interoperability (LTI). This paper presents an architecture to coordinate a network of eLearning systems and validate the proposed approach by creating such a network integrated with LMS from two different vendors.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. The results are compared with a genetic algorithm that adopts the direct kinematics. In both cases the trajectory planning is formulated as an optimization problem with constraints.