16 resultados para Sensor Data Fusion Applicazioni
Filtro por publicador
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (23)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (27)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (16)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (44)
- Boston University Digital Common (10)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (42)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (40)
- Cochin University of Science & Technology (CUSAT), India (13)
- CORA - Cork Open Research Archive - University College Cork - Ireland (14)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (9)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (76)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (16)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Publishing Network for Geoscientific & Environmental Data (94)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (40)
- Queensland University of Technology - ePrints Archive (164)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (8)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (26)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (4)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (6)
- University of Washington (2)
Resumo:
Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.