61 resultados para Second generation bioethanol
Resumo:
The development of renewable energy sources and Distributed Generation (DG) of electricity is of main importance in the way towards a sustainable development. However, the management, in large scale, of these technologies is complicated because of the intermittency of primary resources (wind, sunshine, etc.) and small scale of some plants. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. VPPs can ensure a secure, environmentally friendly generation and optimal management of heat, electricity and cold as well as optimal operation and maintenance of electrical equipment, including the sale of electricity in the energy market. For attaining these goals, there are important issues to deal with, such as reserve management strategies, strategies for bids formulation, the producers’ remuneration, and the producers’ characterization for coalition formation. This chapter presents the most important concepts related with renewable-based generation integration in electricity markets, using VPP paradigm. The presented case studies make use of two main computer applications:ViProd and MASCEM. ViProd simulates VPP operation, including the management of plants in operation. MASCEM is a multi-agent based electricity market simulator that supports the inclusion of VPPs in the players set.
Resumo:
During the past 15 years, emergence and dissemination of third-generation cephalosporins resistance in nosocomial Enterobacteriaceae became a serious problem worldwide, due to the production of extended-spectrum-β-lactamases (ESBLs). The aim of this study was to investigate among the presence of ESBL-producing enterobacteria among Portuguese clinical isolates nearby Spain, to investigate the antimicrobial susceptibility patterns and to compare the two countries. The β-lactamases genes, blaTEM, blaSHV and blaCTX-M were detected by molecular methods. Among the ESBL-producing isolates it was found extraordinary levels (98.9%) of resistance to the fourth-generation cephalosporin Cefepime. These findings point to the need of reevaluate the definition of ESBL.
Resumo:
Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.
Resumo:
Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response
Resumo:
Demand response can play a very relevant role in future power systems in which distributed generation can help to assure service continuity in some fault situations. This paper deals with the demand response concept and discusses its use in the context of competitive electricity markets and intensive use of distributed generation. The paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes using a realistic network simulation based on PSCAD. Demand response opportunities are used in an optimized way considering flexible contracts between consumers and suppliers. A case study evidences the advantages of using flexible contracts and optimizing the available generation when there is a lack of supply.
Resumo:
Nowadays, there is a growing environmental concern about were the energy that we use comes from, bringing the att ention on renewable energies. However, the use and trade of renewable e nergies in the market seem to be complicated because of the lack of guara ntees of generation, mainly in the wind farms. The lack of guarantees is usually addressed by using a reserve generation. The aggregation of DG p lants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of wind generation technologies, making them valuable in electricity markets. This paper presents some resul ts obtained with a simulation tool (ViProd) developed to support VPPs in the analysis of their operation and management methods and of their strat egies effects.
Resumo:
Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.
Resumo:
In the last years there has been a considerable increase in the number of people in need of intensive care, especially among the elderly, a phenomenon that is related to population ageing (Brown 2003). However, this is not exclusive of the elderly, as diseases as obesity, diabetes, and blood pressure have been increasing among young adults (Ford and Capewell 2007). As a new fact, it has to be dealt with by the healthcare sector, and particularly by the public one. Thus, the importance of finding new and cost effective ways for healthcare delivery are of particular importance, especially when the patients are not to be detached from their environments (WHO 2004). Following this line of thinking, a VirtualECare Multiagent System is presented in section 2, being our efforts centered on its Group Decision modules (Costa, Neves et al. 2007) (Camarinha-Matos and Afsarmanesh 2001).On the other hand, there has been a growing interest in combining the technological advances in the information society - computing, telecommunications and knowledge – in order to create new methodologies for problem solving, namely those that convey on Group Decision Support Systems (GDSS), based on agent perception. Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities, in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life cycle. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the GDSS referred to above to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This attainment is vital, regarding the incoming to the market of new drugs and medical practices, which compete in the use of limited resources.
Resumo:
Today, business group decision making is an extremely important activity. A considerable number of applications and research have been made in the past years in order to increase the effectiveness of decision making process. In order to support the idea generation process, IGTAI (Idea Generation Tool for Ambient Intelligence) prototype was created. IGTAI is a Group Decision Support System designed to support any kind of meetings namely distributed, asynchronous or face to face. It aims at helping geographically distributed (or not) people and organizations in the idea generation task, by making use of pervasive hardware in a meeting room, expanding the meeting beyond the room walls by allowing a ubiquitous access through different kinds of equipment. This paper focus on the research made to build IGTAI prototype, its architecture and its main functionalities, namely the support given in the different phases of the idea generation meeting.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.
Resumo:
O objectivo deste projecto consiste em analisar o potencial eólico em ambiente edificado urbano, considerando a utilização de turbinas eólicas de eixo vertical para produção de energia nesse contexto. Pretende-se com este documento demonstrar que, embora os estudos sobre as turbinas de eixo vertical sejam ainda reduzidos quando comparados aos das de eixo horizontal, tal não implica que as mesmas não tenham características que, em determinados cenários, sejam superiores às turbinas de eixo horizontal. Para a análise da intensidade de vento em cenário edificado urbano, seleccionou-se como local de estudo desta tese o Instituto Superior de Engenharia do Porto (ISEP), mais concretamente, o edifício F e o edifício E. Foi escolhido o edifício F, pelo facto de a acessibilidade ao mesmo ser mais fácil e também pelo facto de nesse edifício se ter acesso à parte norte do mesmo, onde os ventos são de intensidade mais forte. O edifício E como já tinha um anemómetro colocado a recolher dados para a estação meteorológica do ISEP foi igualmente objecto de incorporação na tese e utilizado na avaliação geoestatística exemplificativa. Após a extensa recolha de dados nos locais anteriormente mencionados, procedeu-se à análise de diversas turbinas de eixo vertical em termos dos respectivos perfis de produção. De seguida, efectuou-se uma análise estatística e geoestatística de carácter exemplificativo, de modo a caracterizar a intensidade de vento presente na área compreendida entre o edifício E e o edifício F. De forma a finalizar o documento, é apresentada uma conclusão relativa ao potencial eólico para produção de energia eléctrica em ambiente edificado urbano por recurso a turbinas eólicas de eixo vertical.