21 resultados para Random noise theory
Resumo:
Evidence indicates that exposure to high levels of noise adversely affects human health, and these effects are dependent upon various factors. In hospitals, there are many sources of noise, and high levels exert an impact on patients and staff, increasing both recovery time and stress, respectively. The goal of this pilot study was to develop, implement and evaluate the effectiveness of a training program (TP) on noise reduction in a Neonatal Intensive Care Units (NICU) by comparing the noise levels before and after the implementation of the program. A total of 79 health professionals participated in the study. The measurements of sound pressure levels took into account the layout of the unit and location of the main sources of noise. General results indicated that LAeq levels before implementation of the training program were often excessive, ranging from 48.7 ± 2.94 dBA to 71.7 ± 4.74 dBA, exceeding international guidelines. Similarly following implementation of the training program noise levels remained unchanged (54.5 ± 0.49 dBA to 63.9 ± 4.37 dBA), despite a decrease in some locations. There was no significant difference before and after the implementation of TP. However a significant difference was found for Lp, Cpeak, before and after training staff, suggesting greater care by healthcare professionals performing their tasks. Even recognizing that a TP is quite important to change behaviors, this needs to be considered in a broader context to effectively control noise in the NICU.
Resumo:
8th International Workshop on Multiple Access Communications (MACOM2015), Helsinki, Finland.
Resumo:
Smart Grids (SGs) have emerged as the new paradigm for power system operation and management, being designed to include large amounts of distributed energy resources. This new paradigm requires new Energy Resource Management (ERM) methodologies considering different operation strategies and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis of the classifications that were attributed by each VPP to the distributed generation units, as well as in the analysis of the previous established contracts by each player. The proposed classification model is based in fourteen parameters including technical, economical and behavioural ones. Depending of the VPP strategies, size and goals, each parameter has different importance. VPP can also manage other type of energy resources, like storage units, electric vehicles, demand response programs or even parts of the MV and LV distribution network. A case study with twelve VPPs with different characteristics and one hundred and fifty real distributed generation units is included in the paper.
Resumo:
This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.
Resumo:
The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.
Resumo:
There is no complete overview or discussion of the literature of the economics of federalism and fiscal decentralization, even though scholarly interest in the topic has been increasing significantly over recent years. This paper provides a general, brief but comprehensive overview of the main insights from the literature on fiscal federalism and decentralization. In doing so, literature on fiscal federalism and decentralization is grouped into two main approaches: “first generation of theories” and “second generation of theories”.