23 resultados para Programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the teaching-learning process in domains, such as computer programming, is characterized by an extensive curricula and a high enrolment of students. This poses a great workload for faculty and teaching assistants responsible for the creation, delivery, and assessment of student exercises. The main goal of this chapter is to foster practice-based learning in complex domains. This objective is attained with an e-learning framework—called Ensemble—as a conceptual tool to organize and facilitate technical interoperability among services. The Ensemble framework is used on a specific domain: computer programming. Content issues are tacked with a standard format to describe programming exercises as learning objects. Communication is achieved with the extension of existing specifications for the interoperation with several systems typically found in an e-learning environment. In order to evaluate the acceptability of the proposed solution, an Ensemble instance was validated on a classroom experiment with encouraging results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the problem of the evolution of an object-oriented database in the context of orthogonal persistent programming systems is addressed. We have observed two characteristics in that type of systems that offer particular conditions to implement the evolution in a semi-transparent fashion. That transparency can further be enhanced with the obliviousness provided by the Aspect-Oriented Programming techniques. Was conceived a meta-model and developed a prototype to test the feasibility of our approach. The system allows programs, written to a schema, access semi-transparently to data in other versions of the schema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The persistence concern implemented as an aspect has been studied since the appearance of the Aspect-Oriented paradigm. Frequently, persistence is given as an example that can be aspectized, but until today no real world solution has applied that paradigm. Such solution should be able to enhance the programmer productivity and make the application less prone to errors. To test the viability of that concept, in a previous study we developed a prototype that implements Orthogonal Persistence as an aspect. This first version of the prototype was already fully functional with all Java types including arrays. In this work the results of our new research to overcome some limitations that we have identified on the data type abstraction and transparency in the prototype are presented. One of our goals was to avoid the Java standard idiom for genericity, based on casts, type tests and subtyping. Moreover, we also find the need to introduce some dynamic data type abilities. We consider that the Reflection is the solution to those issues. To achieve that, we have extended our prototype with a new static weaver that preprocesses the application source code in order to introduce changes to the normal behavior of the Java compiler with a new generated reflective code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications are subject of a continuous evolution process with a profound impact on their underlining data model, hence requiring frequent updates in the applications' class structure and database structure as well. This twofold problem, schema evolution and instance adaptation, usually known as database evolution, is addressed in this thesis. Additionally, we address concurrency and error recovery problems with a novel meta-model and its aspect-oriented implementation. Modern object-oriented databases provide features that help programmers deal with object persistence, as well as all related problems such as database evolution, concurrency and error handling. In most systems there are transparent mechanisms to address these problems, nonetheless the database evolution problem still requires some human intervention, which consumes much of programmers' and database administrators' work effort. Earlier research works have demonstrated that aspect-oriented programming (AOP) techniques enable the development of flexible and pluggable systems. In these earlier works, the schema evolution and the instance adaptation problems were addressed as database management concerns. However, none of this research was focused on orthogonal persistent systems. We argue that AOP techniques are well suited to address these problems in orthogonal persistent systems. Regarding the concurrency and error recovery, earlier research showed that only syntactic obliviousness between the base program and aspects is possible. Our meta-model and framework follow an aspect-oriented approach focused on the object-oriented orthogonal persistent context. The proposed meta-model is characterized by its simplicity in order to achieve efficient and transparent database evolution mechanisms. Our meta-model supports multiple versions of a class structure by applying a class versioning strategy. Thus, enabling bidirectional application compatibility among versions of each class structure. That is to say, the database structure can be updated because earlier applications continue to work, as well as later applications that have only known the updated class structure. The specific characteristics of orthogonal persistent systems, as well as a metadata enrichment strategy within the application's source code, complete the inception of the meta-model and have motivated our research work. To test the feasibility of the approach, a prototype was developed. Our prototype is a framework that mediates the interaction between applications and the database, providing them with orthogonal persistence mechanisms. These mechanisms are introduced into applications as an {\it aspect} in the aspect-oriented sense. Objects do not require the extension of any super class, the implementation of an interface nor contain a particular annotation. Parametric type classes are also correctly handled by our framework. However, classes that belong to the programming environment must not be handled as versionable due to restrictions imposed by the Java Virtual Machine. Regarding concurrency support, the framework provides the applications with a multithreaded environment which supports database transactions and error recovery. The framework keeps applications oblivious to the database evolution problem, as well as persistence. Programmers can update the applications' class structure because the framework will produce a new version for it at the database metadata layer. Using our XML based pointcut/advice constructs, the framework's instance adaptation mechanism is extended, hence keeping the framework also oblivious to this problem. The potential developing gains provided by the prototype were benchmarked. In our case study, the results confirm that mechanisms' transparency has positive repercussions on the programmer's productivity, simplifying the entire evolution process at application and database levels. The meta-model itself also was benchmarked in terms of complexity and agility. Compared with other meta-models, it requires less meta-object modifications in each schema evolution step. Other types of tests were carried out in order to validate prototype and meta-model robustness. In order to perform these tests, we used an OO7 small size database due to its data model complexity. Since the developed prototype offers some features that were not observed in other known systems, performance benchmarks were not possible. However, the developed benchmark is now available to perform future performance comparisons with equivalent systems. In order to test our approach in a real world scenario, we developed a proof-of-concept application. This application was developed without any persistence mechanisms. Using our framework and minor changes applied to the application's source code, we added these mechanisms. Furthermore, we tested the application in a schema evolution scenario. This real world experience using our framework showed that applications remains oblivious to persistence and database evolution. In this case study, our framework proved to be a useful tool for programmers and database administrators. Performance issues and the single Java Virtual Machine concurrent model are the major limitations found in the framework.