40 resultados para Process power plant
Resumo:
The aim of this work was to assess the influence of meteorological conditions on the dispersion of particulate matter from an industrial zone into urban and suburban areas. The particulate matter concentration was related to the most important meteorological variables such as wind direction, velocity and frequency. A coal-fired power plant was considered to be the main emission source with two stacks of 225 m height. A middle point between the two stacks was taken as the centre of two concentric circles with 6 and 20 km radius delimiting the sampling area. About 40 sampling collectors were placed within this area. Meteorological data was obtained from a portable meteorological station placed at approximately 1.7 km to SE from the stacks. Additional data was obtained from the electrical company that runs the coal power plant. These data covers the years from 2006 to the present. A detailed statistical analysis was performed to identify the most frequent meteorological conditions concerning mainly wind speed and direction. This analysis revealed that the most frequent wind blows from Northwest and North and the strongest winds blow from Northwest. Particulate matter deposition was obtained in two sampling campaigns carried out in summer and in spring. For the first campaign the monthly average flux deposition was 1.90 g/m2 and for the second campaign this value was 0.79 g/m2. Wind dispersion occurred predominantly from North to South, away from the nearest residential area, located at about 6 km to Northwest from the stacks. Nevertheless, the higher deposition fluxes occurred in the NW/N and NE/E quadrants. This study was conducted considering only the contribution of particulate matter from coal combustion, however, others sources may be present as well, such as road traffic. Additional chemical analyses and microanalysis are needed to identify the source linkage to flux deposition levels.
Resumo:
Mestrado em Energias Sustentáveis
Resumo:
O Sector eléctrico possui uma grande importância nas sociedades modernas. Dados os elevados custos de produção de energia e o grande impacto que esta tem na nossa economia e na sociedade, em geral, a utilização mais eficiente da energia é um factor fulcral. Com a evolução da electrónica e consequente aumento das capacidades dos computadores, as protecções eléctricas são cada vez mais eficazes e com índices de fiabilidade mais elevados, algo muito importante em instalações de elevado custo de investimento e manutenção. No entanto, o seu bom funcionamento está dependente do correcto dimensionamento das protecções e de uma análise técnica capaz de prever necessidades futuras. Após uma breve introdução no capítulo 1 é efectuado no capítulo 2 um breve estudo de protecções eléctricas e o seu estado de arte. Nos Capítulos 3 e 4 é efectuado o dimensionamento e estudo da selectividade das protecções de grupo de Alternador e Transformador escolhidos para a nova central de cogeração da refinaria de Matosinhos da Galp. No presente estudo foram apenas consideradas as protecções típicas de alternador e apenas a protecção diferencial do transformador. Todas as protecções foram dimensionadas com base no tutorial de protecções de geradores do IEE e com informação referente ao manual de instruções do relé G60 da GE industrial systems, o DTP-B da GE multilin e o ELIN Power Plant Automation. No Capítulo 5 é demonstrada a importância da análise Safety Instruments Systems (SIS), o seu modo de aplicação e necessidade de implementação em locais industriais como o caso em estudo. Por último, é efectuado um pequeno estudo económico onde é efectuada a comparação dos custos dos diversos equipamentos, protecções e manutenções efectuadas.
Resumo:
O constante crescimento dos produtores em regime especial aliado à descentralização dos pontos injetores na rede, tem permitido uma redução da importação de energia mas também tem acarretado maiores problemas para a gestão da rede. Estes problemas estão relacionados com o facto da produção estar dependente das condições climatéricas, como é o caso dos produtores eólicos, hídricos e solares. A previsão da energia produzida em função da previsão das condições climatéricas tem sido alvo de atenção por parte da comunidade empresarial do setor, pelo facto de existir modelos razoáveis para a previsão das condições climatéricas a curto prazo, e até a longo prazo. Este trabalho trata, em concreto, do problema da previsão de produção em centrais mini-hídricas, apresentando duas propostas para essa previsão. Em ambas as propostas efetua-se inicialmente a previsão do caudal que chega à central, sendo esta depois convertida em potência que é injetada na rede. Para a previsão do caudal utilizaram-se dois métodos estatísticos: o método Holt-Winters e os modelos ARMAX. Os dois modelos de previsão propostos consideram um horizonte temporal de uma semana, com discretização horária, para uma central no norte de Portugal, designadamente a central de Penide. O trabalho também contempla um pequeno estudo da bibliografia existente tanto para a previsão da produção como de afluências de centrais hidroelétricas. Aborda, ainda, conceitos relacionados com as mini-hídricas e apresenta uma caraterização do parque de centrais mini-hídricas em Portugal.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
In this paper we present VERITAS, a tool that focus time maintenance, that is one of the most important processes in the engineering of the time during the development of KBS. The verification and validation (V&V) process is part of a wider process denominated knowledge maintenance, in which an enterprise systematically gathers, organizes, shares, and analyzes knowledge to accomplish its goals and mission. The V&V process states if the software requirements specifications have been correctly and completely fulfilled. The methodologies proposed in software engineering have showed to be inadequate for Knowledge Based Systems (KBS) validation and verification, since KBS present some particular characteristics. VERITAS is an automatic tool developed for KBS verification which is able to detect a large number of knowledge anomalies. It addresses many relevant aspects considered in real applications, like the usage of rule triggering selection mechanisms and temporal reasoning.
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
With the current complexity of communication protocols, implementing its layers totally in the kernel of the operating system is too cumbersome, and it does not allow use of the capabilities only available in user space processes. However, building protocols as user space processes must not impair the responsiveness of the communication. Therefore, in this paper we present a layer of a communication protocol, which, due to its complexity, was implemented in a user space process. Lower layers of the protocol are, for responsiveness issues, implemented in the kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing requirements.
Resumo:
Atualmente, os aterros sanitários representam uma solução para a gestão e tratamento dos resíduos sólidos urbanos. Da deposição, ocorrem duas formas de emissões ao longo do tempo, a produção de biogás e de lixiviados, que resultam sobretudo da decomposição da matéria orgânica. Um dos principais constituintes do biogás é o metano, o qual tem elevado poder calorífico. O presente trabalho aborda, a maximização da valorização energética em aterros sanitários, recorrendo a equipamentos baseados no Ciclo Orgânico de Rankine (ORC) para a produção de eletricidade. É apresentado como caso de estudo a central de valorização energética da Suldouro, em Sermonde, que produz eletricidade a partir do biogás resultante da decomposição da matéria orgânica depositada em aterro. O biogás é utilizado como combustível para os motogeradores utilizados para o seu aproveitamento energético, sendo que apenas cerca de 40% do potencial energético contido no biogás é transformado em eletricidade, registando-se perdas sobretudo nas emissões dos gases de exaustão e na água de arrefecimento dos motores. Para avaliação do potencial da recuperação energética dos gases de escape é avaliado o desempenho termodinâmico do ciclo ORC. Para tal foi desenvolvida uma ferramenta em MATLAB utilizando como modelo a configuração do ORC com recuperador de calor. O cálculo das propriedades termodinâmicas dos fluidos foi obtido através da criação de uma sub-rotina que chama o programa CoolProp. Este programa restitui propriedades como a entalpia, entropia, pressões e temperaturas em cada ponto do ciclo, permitindo assim ao utilizador otimizar o tempo na obtenção de resultados. A avaliação económica é fundamental na tomada de decisões por parte do investidor e dos financiadores do projeto. É então apresentada a análise económica e efetuada uma análise de sensibilidade, onde foram efetuadas variações nos vetores mais importantes de forma a poder avaliar-se o impacto em termos da sua rentabilidade. A ferramenta desenvolvida permite obter de forma prática, os três indicadores económicos extremamente influentes no que se refere à tomada de decisão. A utilização dos sistemas ORC e os seus benefícios não se esgotam na maximização dos aproveitamentos da valorização energética em aterros sanitários. Também a recuperação de calor para a produção de energia elétrica pode ter um impacto importante em muitos setores intensivos de energia, contribuindo significativamente para a redução do consumo e aumentando a eficiência de todo o processo de produção.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
This study addresses to the optimization of pultrusion manufacturing process from the energy-consumption point of view. The die heating system of external platen heaters commonly used in the pultrusion machines is one of the components that contribute the most to the high consumption of energy of pultrusion process. Hence, instead of the conventional multi-planar heaters, a new internal die heating system that leads to minor heat losses is proposed. The effect of the number and relative position of the embedded heaters along the die is also analysed towards the setting up of the optimum arrangement that minimizes both the energy rate and consumption. Simulation and optimization processes were greatly supported by Finite Element Analysis (FEA) and calibrated with basis on the temperature profile computed through thermography imaging techniques. The main outputs of this study allow to conclude that the use of embedded cylindrical resistances instead of external planar heaters leads to drastic reductions of both the power consumption and the warm-up periods of the die heating system. For the analysed die tool and process, savings on energy consumption up to 60% and warm-up period stages less than an half hour were attained with the new internal heating system. The improvements achieved allow reducing the power requirements on pultrusion process, and thus minimize industrial costs and contribute to a more sustainable pultrusion manufacturing industry.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
With the emergence of low-power wireless hardware new ways of communication were needed. In order to standardize the communication between these low powered devices the Internet Engineering Task Force (IETF) released the 6LoWPAN stand- ard that acts as an additional layer for making the IPv6 link layer suitable for the lower-power and lossy networks. In the same way, IPv6 Routing Protocol for Low- Power and Lossy Networks (RPL) has been proposed by the IETF Routing Over Low power and Lossy networks (ROLL) Working Group as a standard routing protocol for IPv6 routing in low-power wireless sensor networks. The research performed in this thesis uses these technologies to implement a mobility process. Mobility management is a fundamental yet challenging area in low-power wireless networks. There are applications that require mobile nodes to exchange data with a xed infrastructure with quality-of-service guarantees. A prime example of these applications is the monitoring of patients in real-time. In these scenarios, broadcast- ing data to all access points (APs) within range may not be a valid option due to the energy consumption, data storage and complexity requirements. An alternative and e cient option is to allow mobile nodes to perform hand-o s. Hand-o mechanisms have been well studied in cellular and ad-hoc networks. However, low-power wireless networks pose a new set of challenges. On one hand, simpler radios and constrained resources ask for simpler hand-o schemes. On the other hand, the shorter coverage and higher variability of low-power links require a careful tuning of the hand-o parameters. In this work, we tackle the problem of integrating smart-HOP within a standard protocol, speci cally RPL. The simulation results in Cooja indicate that the pro- posed scheme minimizes the hand-o delay and the total network overhead. The standard RPL protocol is simply unable to provide a reliable mobility support sim- ilar to other COTS technologies. Instead, they support joining and leaving of nodes, with very low responsiveness in the existence of physical mobility.