33 resultados para Predictive Models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study a model for HIV and TB coinfection. We consider the integer order and the fractional order versions of the model. Let α∈[0.78,1.0] be the order of the fractional derivative, then the integer order model is obtained for α=1.0. The model includes vertical transmission for HIV and treatment for both diseases. We compute the reproduction number of the integer order model and HIV and TB submodels, and the stability of the disease free equilibrium. We sketch the bifurcation diagrams of the integer order model, for variation of the average number of sexual partners per person and per unit time, and the tuberculosis transmission rate. We analyze numerical results of the fractional order model for different values of α, including α=1. The results show distinct types of transients, for variation of α. Moreover, we speculate, from observation of the numerical results, that the order of the fractional derivative may behave as a bifurcation parameter for the model. We conclude that the dynamics of the integer and the fractional order versions of the model are very rich and that together these versions may provide a better understanding of the dynamics of HIV and TB coinfection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most effective therapeutic option for managing nonmuscle invasive bladder cancer (NMIBC), over the last 30 years, consists of intravesical instillations with the attenuated strain Bacillus Calmette-Gu´erin (the BCG vaccine). This has been performed as an adjuvant therapeutic to transurethral resection of bladder tumour (TURBT) and mostly directed towards patients with highgrade tumours, T1 tumours, and in situ carcinomas. However, from 20% to 40% of the patients do not respond and frequently present tumour progression. Since BCG effectiveness is unpredictable, it is important to find consistent biomarkers that can aid either in the prediction of the outcome and/or side effects development. Accordingly, we conducted a systematic critical review to identify themost preeminent predictive molecular markers associated with BCG response. To the best of our knowledge, this is the first review exclusively focusing on predictive biomarkers for BCG treatment outcome. Using a specific query, 1324 abstracts were gathered, then inclusion/exclusion criteria were applied, and finally 87 manuscripts were included. Several molecules, including CD68 and genetic polymorphisms, have been identified as promising surrogate biomarkers. Combinatory analysis of the candidate predictive markers is a crucial step to create a predictive profile of treatment response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As empresas nacionais deparam-se com a necessidade de responder ao mercado com uma grande variedade de produtos, pequenas séries e prazos de entrega reduzidos. A competitividade das empresas num mercado global depende assim da sua eficiência, da sua flexibilidade, da qualidade dos seus produtos e de custos reduzidos. Para se atingirem estes objetivos é necessário desenvolverem-se estratégias e planos de ação que envolvem os equipamentos produtivos, incluindo: a criação de novos equipamentos complexos e mais fiáveis, alteração dos equipamentos existentes modernizando-os de forma a responderem às necessidades atuais e a aumentar a sua disponibilidade e produtividade; e implementação de políticas de manutenção mais assertiva e focada no objetivo de “zero avarias”, como é o caso da manutenção preditiva. Neste contexto, o objetivo principal deste trabalho consiste na previsão do instante temporal ótimo da manutenção de um equipamento industrial – um refinador da fábrica de Mangualde da empresa Sonae Industria, que se encontra em funcionamento contínuo 24 horas por dia, 365 dias por ano. Para o efeito são utilizadas medidas de sensores que monitorizam continuamente o estado do refinador. A principal operação de manutenção deste equipamento é a substituição de dois discos metálicos do seu principal componente – o desfibrador. Consequentemente, o sensor do refinador analisado com maior detalhe é o sensor que mede a distância entre os dois discos do desfibrador. Os modelos ARIMA consistem numa abordagem estatística avançada para previsão de séries temporais. Baseados na descrição da autocorrelação dos dados, estes modelos descrevem uma série temporal como função dos seus valores passados. Neste trabalho, a metodologia ARIMA é utilizada para determinar um modelo que efetua uma previsão dos valores futuros do sensor que mede a distância entre os dois discos do desfibrador, determinando-se assim o momento ótimo da sua substituição e evitando paragens forçadas de produção por ocorrência de uma falha por desgaste dos discos. Os resultados obtidos neste trabalho constituem uma contribuição científica importante para a área da manutenção preditiva e deteção de falhas em equipamentos industriais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada ao Instituto Superior de Contabilidade e Administração do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo Gestão de Empresas Orientador: Professor Doutor Eduardo Manuel Lopes de Sá e Silva Co-orientador: Mestre Maria de Fátima Mendes Monteiro

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os modelos de maturidade são instrumentos facilitadores da gestão das organizações, incluindo a gestão da sua função sistemas de informação, não sendo exceção as organizações hospitalares. Neste artigo apresenta-se uma investigação inicial que visa o desenvolvimento de um abrangente modelo de maturidade para a gestão dos sistemas de informação hospitalares. O desenvolvimento deste modelo justifica-se porque os modelos de maturidade atuais no domínio da gestão dos sistemas informação hospitalares ainda se encontram numa fase embrionária de desenvolvimento, sobretudo porque são pouco detalhados, não disponibilizam ferramentas para determinação da maturidade e não apresentam as características dos estágios de maturidade estruturadas por diferentes fatores de influência.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integrity of multi-component structures is usually determined by their unions. Adhesive-bonding is often used over traditional methods because of the reduction of stress concentrations, reduced weight penalty, and easy manufacturing. Commercial adhesives range from strong and brittle (e.g., Araldite® AV138) to less strong and ductile (e.g., Araldite® 2015). A new family of polyurethane adhesives combines high strength and ductility (e.g., Sikaforce® 7888). In this work, the performance of the three above-mentioned adhesives was tested in single lap joints with varying values of overlap length (LO). The experimental work carried out is accompanied by a detailed numerical analysis by finite elements, either based on cohesive zone models (CZM) or the extended finite element method (XFEM). This procedure enabled detailing the performance of these predictive techniques applied to bonded joints. Moreover, it was possible to evaluate which family of adhesives is more suited for each joint geometry. CZM revealed to be highly accurate, except for largely ductile adhesives, although this could be circumvented with a different cohesive law. XFEM is not the most suited technique for mixed-mode damage growth, but a rough prediction was achieved.