29 resultados para Practical science
Resumo:
Remote Experimentation is an educational resource that allows teachers to strengthen the practical contents of science & engineering courses. However, building up the interfaces to remote experiments is not a trivial task. Although teachers normally master the practical contents addressed by a particular remote experiment they usually lack the programming skills required to quickly build up the corresponding web interface. This paper describes the automatic generation of experiment interfaces through a web-accessible Java application. The application displays a list of existent modules and once the requested modules have been selected, it generates the code that enables the browser to display the experiment interface. The tools? main advantage is enabling non-tech teachers to create their own remote experiments.
Resumo:
The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena. The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm for establishing the fractional order electrical potential and analyzes its characteristics.
Resumo:
STRIPPING is a software application developed for the automatic design of a randomly packing column where the transfer of volatile organic compounds (VOCs) from water to air can be performed and to simulate it’s behaviour in a steady-state. This software completely purges any need of experimental work for the selection of diameter of the column, and allows a choice, a priori, of the most convenient hydraulic regime for this type of operation. It also allows the operator to choose the model used for the calculation of some parameters, namely between the Eckert/Robbins model and the Billet model for estimating the pressure drop of the gaseous phase, and between the Billet and Onda/Djebbar’s models for the mass transfer. Illustrations of the graphical interface offered are presented.
Resumo:
Spent coffee grounds (SCG) are usually disposed as common garbage, without specific reuse strategies implemented so far. Due to its recognised richness in bioactive compounds, the effect of SCG on lettuce’s macro- and micro-elements was assessed to define its effectiveness for agro industrial reuse. A greenhouse pot experiment was conducted with different amounts of fresh and composted spent coffee, and potassium, magnesium, phosphorous, calcium, sodium, iron, manganese, zinc and copper were analysed. A progressive decrease on all lettuce mineral elements was verified with the increase of fresh spent coffee, except for potassium. In opposition, an increment of lettuce’s essential macro-elements was verified when low amounts of composted spent coffee were applied (5%, v/v), increasing potassium content by 40%, manganese by 30%, magnesium by 20%, and sodium by 10%, of nutritional relevance This practical approach offers an alternative reuse for this by-product, extendable to other crops, providing value-added vegetable products.
Resumo:
Among aminoacidopathies, phenylketonuria (PKU) is the most prevalent one. Early diagnosis in the neonatal period with a prompt nutritional therapy (low natural-protein and phenylalanine diet, supplemented with phenylalanine-free amino acid mixtures and special low-protein foods) remains the mainstay of the treatment. Data considering nutrient contents of cooked dishes is lacking. In this study, fourteen dishes specifically prepared for PKU individuals were analysed, regarding the lipid profile and iron and zinc contents. These dishes are poor sources of essential nutrients like Fe, Zn or n-3 fatty acids, reinforcing the need for adequate supplementation to cover individual patients’ needs. This study can contribute to a more accurate adjustment of PKU diets and supplementation in order to prevent eventual nutritional deficiencies. This study contributes to a better understanding of nutrient intake from PKU patients’ meals, showing the need for dietary supplementation.
Resumo:
Energy consumption is one of the major issues for modern embedded systems. Early, power saving approaches mainly focused on dynamic power dissipation, while neglecting the static (leakage) energy consumption. However, technology improvements resulted in a case where static power dissipation increasingly dominates. Addressing this issue, hardware vendors have equipped modern processors with several sleep states. We propose a set of leakage-aware energy management approaches that reduce the energy consumption of embedded real-time systems while respecting the real-time constraints. Our algorithms are based on the race-to-halt strategy that tends to run the system at top speed with an aim to create long idle intervals, which are used to deploy a sleep state. The effectiveness of our algorithms is illustrated with an extensive set of simulations that show an improvement of up to 8% reduction in energy consumption over existing work at high utilization. The complexity of our algorithms is smaller when compared to state-of-the-art algorithms. We also eliminate assumptions made in the related work that restrict the practical application of the respective algorithms. Moreover, a novel study about the relation between the use of sleep intervals and the number of pre-emptions is also presented utilizing a large set of simulation results, where our algorithms reduce the experienced number of pre-emptions in all cases. Our results show that sleep states in general can save up to 30% of the overall number of pre-emptions when compared to the sleep-agnostic earliest-deadline-first algorithm.
Resumo:
The use of appropriate acceptance criteria in the risk assessment process for occupational accidents is an important issue but often overlooked in the literature, particularly when new risk assessment methods are proposed and discussed. In most cases, there is no information on how or by whom they were defined, or even how companies can adapt them to their own circumstances. Bearing this in mind, this study analysed the problem of the definition of risk acceptance criteria for occupational settings, defining the quantitative acceptance criteria for the specific case study of the Portuguese furniture industrial sector. The key steps to be considered in formulating acceptance criteria were analysed in the literature review. By applying the identified steps, the acceptance criteria for the furniture industrial sector were then defined. The Cumulative Distribution Function (CDF) for the injury statistics of the industrial sector was identified as the maximum tolerable risk level. The acceptable threshold was defined by adjusting the CDF to the Occupational, Safety & Health (OSH) practitioners’ risk acceptance judgement. Adjustments of acceptance criteria to the companies’ safety cultures were exemplified by adjusting the Burr distribution parameters. An example of a risk matrix was also used to demonstrate the integration of the defined acceptance criteria into a risk metric. This work has provided substantial contributions to the issue of acceptance criteria for occupational accidents, which may be useful in overcoming the practical difficulties faced by authorities, companies and experts.
Resumo:
An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved. Technology enhancements in the semiconductor industry have allowed the hardware vendors to reduce the device transition and energy overheads. The decrease in overhead of sleep transitions has opened new opportunities to further reduce the device energy consumption. In this research effort, we propose an intra-task device scheduling algorithm for real-time systems that wakes up a device on demand and reduces its active time while ensuring system schedulability. This intra-task device scheduling algorithm is extended for devices with multiple sleep states to further minimise the overall device energy consumption of the system. The proposed algorithms have less complexity when compared to the conservative inter-task device scheduling algorithms. The system model used relaxes some of the assumptions commonly made in the state-of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the proposed algorithms are shown to demonstrate the substantial energy savings.
Resumo:
Biosensors have opened new horizons in biomedical analysis, by ensuring increased assay speed and flexibility, and allowing point-of-care applications, multi-target analyses, automation and reduced costs of testing. This has been a result of many studies merging nanotechnology with biochemistry over the years, thereby enabling the creation of more suitable environments to biological receptors and their substitution by synthetic analogue materials. Sol-gel chemistry, among other materials, is deeply involved in this process. Sol-gel processing allows the immobilization of organic molecules, biomacromolecules and cells maintaining their properties and activities, permitting their integration into different transduction devices, of electrochemical or optical nature, for single or multiple analyses. Sol-gel also allows to the production of synthetic materials mimicking the activity of natural receptors, while bringing advantages, mostly in terms of cost and stability. Moreover, the biocompatibility of sol-gel materials structures of biological nature allowed the use of these materials in emerging in vivo applications. In this chapter, biosensors for biomedical applications based on sol-gel derived composites are presented, compared and described, along with current emerging applications in vivo, concerning drug delivery or biomaterials. Sol-gel materials are shown as a promising tool for current, emerging and future medical applications. - See more at: http://www.eurekaselect.com/127191/article#sthash.iPqqyhox.dpuf
Resumo:
Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.
Resumo:
A vitamin E extraction method for rainbow trout flesh was optimized, validated, and applied in fish fed commercial and Gracilaria vermiculophylla-supplemented diets. Five extraction methods were compared. Vitamers were analyzed by HPLC/DAD/fluorescence. A solid-liquid extraction with n-hexane, which showed the best performance, was optimized and validated. Among the eight vitamers, only α- and γ-tocopherol were detected in muscle samples. The final method showed good linearity (>0.999), intra- (<3.1%) and inter-day precision (<2.6%), and recoveries (>96%). Detection and quantification limits were 39.9 and 121.0 ng/g of muscle, for α-tocopherol, and 111.4 ng/g and 337.6 ng/g, for γ-tocopherol, respectively. Compared to the control group, the dietary inclusion of 5% G. vermiculophylla resulted in a slight reduction of lipids in muscle and, consequently, of α- and γ-tocopherol. Nevertheless, vitamin E profile in lipids was maintained. In general, the results may be explained by the lower vitamin E level in seaweed-containing diet. Practical Applications: Based on the validation results and the low solvent consumption, the developed method can be used to analyze vitamin E in rainbow trout. The results of this work are also a valuable information source for fish feed industries and aquaculture producers, which can focus on improving seaweed inclusion in feeds as a source of vitamin E in fish muscle and, therefore, take full advantage of all bioactive components with an important role in fish health and flesh quality.
Resumo:
Massive Open Online Courses (MOOC) are gaining prominence in transversal teaching-learning strategies. However, there are many issues still debated, namely assessment, recognized largely as a cornerstone in Education. The large number of students involved requires a redefinition of strategies that often use approaches based on tasks or challenging projects. In these conditions and due to this approach, assessment is made through peer-reviewed assignments and quizzes online. The peer-reviewed assignments are often based upon sample answers or topics, which guide the student in the task of evaluating peers. This chapter analyzes the grading and evaluation in MOOCs, especially in science and engineering courses, within the context of education and grading methodologies and discusses possible perspectives to pursue grading quality in massive e-learning courses.
Resumo:
The inter-disciplinarity of information systems, applied discipline and activity of design, and the study from different paradigms perspectives explains the diversity of problems addressed. The context is broad and includes important issues beyond technology, as the application, use, effectiveness, efficiency and their organizational and social impacts. In design science, the research interest is in contributing to the improvement of the processes of the design activity itself. The relevance of research in design science is associated with the result obtained for the improvement of living conditions in organizational, inter-organizational and Society contexts. In the research whose results are artifacts, the adoption of design research as a process of research is crucial to ensure discipline, rigor and transparency. Based on a literature review, this paper clarifies the terms of design science and design research. This is the main motivation for presenting this paper, determinant for the phase in research in technologies and information systems which are the three research projects presented. As a result the three projects are discussed in relation to the concepts of design science and design research.