96 resultados para Optimal Design
Resumo:
Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.
Resumo:
Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.
Resumo:
In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. This paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. The use of DemSi by a retailer in a situation of energy shortage, is presented. Load reduction is obtained using a consumer based price elasticity approach supported by real time pricing. Non-linear programming is used to maximize the retailer’s profit, determining the optimal solution for each envisaged load reduction. The solution determines the price variations considering two different approaches, price variations determined for each individual consumer or for each consumer type, allowing to prove that the approach used does not significantly influence the retailer’s profit. The paper presents a case study in a 33 bus distribution network with 5 distinct consumer types. The obtained results and conclusions show the adequacy of the used methodology and its importance for supporting retailers’ decision making.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
This research work has been focused in the study of gallinaceous feathers, a waste that may be valorised as sorbent, to remove the Dark Blue Astrazon 2RN (DBA) from Dystar. This study was focused on the following aspects: optimization of experimental conditions through factorial design methodology, kinetic studies into a continuous stirred tank adsorber (at pH 7 and 20ºC), equilibrium isotherms (at pH 5, 7 and 9 at 20 and 45ºC) and column studies (at 20ºC, at pH 5, 7 and 9). In order to evaluate the influence of the presence of other components in the sorption of the dyestuff, all experiments were performed both for the dyestuff in aqueous solution and in real textile effluent. The pseudo-first and pseudo-second order kinetic models were fitted to the experimental data, being the latter the best fit for the aqueous solution of dyestuff. For the real effluent both models fit the experimental results and there is no statistical difference between them. The Central Composite Design (CCD) was used to evaluate the effects of temperature (15 - 45ºC) and pH (5 - 9) over the sorption in aqueous solution. The influence of pH was more significant than temperature. The optimal conditions selected were 45ºC and pH 9. Both Langmuir and Freundlich models could fit the equilibrium data. In the concentration range studied, the highest sorbent capacity was obtained for the optimal conditions in aqueous solution, which corresponds to a maximum capacity of 47± 4 mg g-1. The Yoon-Nelson, Thomas and Yan’s models fitted well the column experimental data. The highest breakthrough time for 50% removal, 170 min, was obtained at pH 9 in aqueous solution. The presence of the dyeing agents in the real wastewater decreased the sorption of the dyestuff mostly for pH 9, which is the optimal pH. The effect of pH is less pronounced in the real effluent than in aqueous solution. This work shows that feathers can be used as sorbent in the treatment of textile wastewaters containing DBA.
Resumo:
This paper reports a novel application of microwave-assisted extraction (MAE) of polyphenols from brewer’s spent grains (BSG). A 24 orthogonal composite design was used to obtain the optimal conditions of MAE. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the extraction yield of ferulic acid was investigated through response surface methodology. The results showed that the optimal conditions were 15 min extraction time, 100 °C extraction temperature, 20 mL of solvent, and maximum stirring speed. Under these conditions, the yield of ferulic acid was 1.31±0.04% (w/w), which was fivefold higher than that obtained with conventional solid–liquid extraction techniques. The developed new extraction method considerably reduces extraction time, energy and solvent consumption, while generating fewer wastes. HPLC-DADMS analysis indicated that other hydroxycinnamic acids and several ferulic acid dehydrodimers, as well as one dehydrotrimer were also present, confirming that BSG is a valuable source of antioxidant compounds.
Resumo:
A QuEChERS method for the extraction of ochratoxin A (OTA) from bread samples was evaluated. A factorial design (23) was used to find the optimal QuEChERS parameters (extraction time, extraction solvent volume and sample mass). Extracts were analysed by LC with fluorescence detection. The optimal extraction conditions were: 5 g of sample, 15 mL of acetonitrile and 3 min of agitation. The extraction procedure was validated by systematic recovery experiments at three levels. The recoveries obtained ranged from 94.8% (at 1.0 μg kg -1) to 96.6% (at 3.0 μg kg -1). The limit of quantification of the method was 0.05 μg kg -1. The optimised procedure was applied to 20 samples of different bread types (‘‘Carcaça’’, ‘‘Broa de Milho’’, and ‘‘Broa de Avintes’’) highly consumed in Portugal. None of the samples exceeded the established European legal limit of 3 μg kg -1.
Resumo:
A cada instante surgem novas soluções de aprendizagem, resultado da evolução tecnológica constante com que nos deparamos. Estas inovações potenciam uma transmissão do conhecimento entre o educador e o educando cada vez mais simplificada, rápida e eficiente. Alguns destes avanços têm em vista a centralização no aluno, através da delegação de tarefas e da disponibilização de conteúdos, investindo na autonomia e na auto-aprendizagem, de modo a que cada aluno crie o seu próprio método de estudo, e evolua gradualmente, com o acompanhamento de um professor ou sistema autónomo de aprendizagem. Com esta investigação, é pretendido fazer um estudo dos métodos de aprendizagem ao longo do tempo até à actualidade, enumerando algumas das ferramentas utilizadas no processo de aprendizagem, indicando os vários benefícios, bem como contrapartidas do uso das mesmas. Será também analisado um caso de estudo baseado numa destas ferramentas, descrevendo o seu funcionamento e modo de interacção entre as várias entidades participantes, apresentando os resultados obtidos. O caso de estudo consistirá na criação de um cenário específico de aprendizagem, na área da saúde, analisando-o em diferentes contextos, e evidenciando as características e benefícios de cada ambiente analisado, no processo aprendizagem. Será então demonstrado como é possível optimizar os processos de aprendizagem, utilizando ferramentas de informatização e automatização desses mesmos processos, de forma tornar o processo de ensino mais célere e eficaz, num ambiente controlável, e com as funcionalidades que a tecnologia actual permite.
Resumo:
Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes.