25 resultados para Noses (Space vehicles)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies forest fires from the perspective of dynamical systems. Burnt area, precipitation and atmospheric temperatures are interpreted as state variables of a complex system and the correlations between them are investigated by means of different mathematical tools. First, we use mutual information to reveal potential relationships in the data. Second, we adopt the state space portrait to characterize the system’s behavior. Third, we compare the annual state space curves and we apply clustering and visualization tools to unveil long-range patterns. We use forest fire data for Portugal, covering the years 1980–2003. The territory is divided into two regions (North and South), characterized by different climates and vegetation. The adopted methodology represents a new viewpoint in the context of forest fires, shedding light on a complex phenomenon that needs to be better understood in order to mitigate its devastating consequences, at both economical and environmental levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines modern economic growth according to the multidimensional scaling (MDS) method and state space portrait (SSP) analysis. Electing GDP per capita as the main indicator for economic growth and prosperity, the long-run perspective from 1870 to 2010 identifies the main similarities among 34 world partners’ modern economic growth and exemplifies the historical waving mechanics of the largest world economy, the USA. MDS reveals two main clusters among the European countries and their old offshore territories, and SSP identifies the Great Depression as a mild challenge to the American global performance, when compared to the Second World War and the 2008 crisis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a framework to an Industrial Engineering and Management Science course from School of Management and Industrial Studies using Autonomous Ground Vehicles (AGV) to supply materials to a production line as an experimental setup for the students to acquire knowledge in the production robotics area. The students must be capable to understand and put into good use several concepts that will be of utmost importance in their professional life such as critical decisions regarding the study, development and implementation of a production line. The main focus is a production line using AGVs, where the students are required to address several topics such as: sensors actuators, controllers and an high level management and optimization software. The presented framework brings to the robotics teaching community methodologies that allow students from different backgrounds, that normally don’t experiment with the robotics concepts in practice due to the big gap between theory and practice, to go straight to ”making” robotics. Our aim was to suppress the minimum start point level thus allowing any student to fully experience robotics with little background knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a set of field tests for detection of human in the water with an unmanned surface vehicle using infrared and color cameras. These experiments aimed to contribute in the development of victim target tracking and obstacle avoidance for unmanned surface vehicles operating in marine search and rescue missions. This research is integrated in the work conducted in the European FP7 research project Icarus aiming to develop robotic tools for large scale rescue operations. The tests consisted in the use of the ROAZ unmanned surface vehicle equipped with a precision GPS system for localization and both visible spectrum and IR cameras to detect the target. In the experimental setup, the test human target was deployed in the water wearing a life vest and a diver suit (thus having lower temperature signature in the body except hands and head) and was equipped with a GPS logger. Multiple target approaches were performed in order to test the system with different sun incidence relative angles. The experimental setup, detection method and preliminary results from the field trials performed in the summer of 2013 in Sesimbra, Portugal and in La Spezia, Italy are also presented in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented at 23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, energy production for autonomous underwater vehicles is investigated. This project is part of a bigger project called TURTLE. The autonomous vehicles perform oceanic researches at seabed for which they are intended to be kept operational underwater for several months. In order to ful l a long-term underwater condition, powerful batteries are combined with \micro- scale" energy production on the spot. This work tends to develop a system that generates power up to a maximum of 30 W. Latter energy harvesting structure consists basically of a turbine combined with a generator and low-power electronics to adjust the achieved voltage to a required battery charger voltage. Every component is examined separately hence an optimum can be de ned for all, and subsequently also an overall optimum. Di erent design parameters as e.g. number of blades, solidity ratio and cross-section area are compared for di erent turbines, in order to see what is the most feasible type. Further, a generator is chosen by studying how ux distributions might be adjusted to low velocities, and how cogging torque can be excluded by adapted designs. Low-power electronics are con gured in order to convert and stabilize heavily varying three-phase voltages to a constant, recti ed voltage which is usable for battery storage. Clearly, di erent component parameters as maximum power and torque are matched here to increase the overall power generation. Furthermore an overall maximum power is set up for achieving a maximum power ow at load side. Due to among others typical low velocities of about 0.1 to 0.5 m/s, and constructing limits of the prototype, the vast range of components is restricted to only a few that could be used. Hence, a helical turbine is combined in a direct drive mode to a coreless-stator axial- ux permanent-magnet generator, from which the output voltage is adjusted subsequently by a recti er, impedance matching unit, upconverter circuit and an overall control unit to regulate di erent component parameters. All these electronics are combined in a closed-loop design to involve positive feedback signals. Furthermore a theoretical con guration for the TURTLE vehicle is described in this work and a solution is proposed that might be implemented, for which several design tests are performable in a future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric temperatures characterize Earth as a slow dynamics spatiotemporal system, revealing long-memory and complex behavior. Temperature time series of 54 worldwide geographic locations are considered as representative of the Earth weather dynamics. These data are then interpreted as the time evolution of a set of state space variables describing a complex system. The data are analyzed by means of multidimensional scaling (MDS), and the fractional state space portrait (fSSP). A centennial perspective covering the period from 1910 to 2012 allows MDS to identify similarities among different Earth’s locations. The multivariate mutual information is proposed to determine the “optimal” order of the time derivative for the fSSP representation. The fSSP emerges as a valuable alternative for visualizing system dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.