22 resultados para Neural network based algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Computação e Instrumentação Médica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste documento descreve-se o projeto desenvolvido na unidade curricular de Tese e Dissertação durante o 2º ano do Mestrado de Engenharia Eletrotécnica e de Computadores no ramo de Automação e Sistemas, no Departamento de Engenharia Eletrotécnica (DEE) do Instituto Superior de Engenharia do Porto (ISEP). O projeto escolhido teve como base o uso da tecnologia das redes neuronais para implementação em sistemas de controlo. Foi necessário primeiro realizar um estudo desta tecnologia, perceber como esta surgiu e como é estruturada. Por último, abordar alguns casos de estudo onde as redes neuronais foram aplicadas com sucesso. Relativamente à implementação, foram consideradas diferentes estruturas de controlo, e entre estas escolhidas a do sistema de controlo estabilizador e sistema de referência adaptativo. No entanto, como o objetivo deste trabalho é o estudo de desempenho quando aplicadas as redes neuronais, não se utilizam apenas estas como controlador. A análise exposta neste trabalho trata de perceber em que medida é que a introdução das redes neuronais melhora o controlo de um processo. Assim sendo, os sistemas de controlo utilizados devem conter pelo menos uma rede neuronal e um controlador PID. Os testes de desempenho são aplicados no controlo de um motor DC, sendo realizados através do recurso ao software MATLAB. As simulações efetuadas têm diferentes configurações de modo a tirar conclusões o mais gerais possível. Assim, os sistemas de controlo são simulados para dois tipos de entrada diferentes, e com ou sem a adição de ruído no sensor. Por fim, é efetuada uma análise das respostas de cada sistema implementado e calculados os índices de desempenho das mesmas.