143 resultados para Multi-Agent Model
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
Emotion although being an important factor in our every day life it is many times forgotten in the development of systems to be used by persons. In this work we present an architecture for a ubiquitous group decision support system able to support persons in group decision processes. The system considers the emotional factors of the intervenient participants, as well as the argumentation between them. Particular attention will be taken to one of components of this system: the multi-agent simulator, modeling the human participants, considering emotional characteristics, and allowing the exchanges of hypothetic arguments among the participants.
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.
Resumo:
With the increasing importance of large commerce across the Internet it is becoming increasingly evident that in a few years the Iternet will host a large number of interacting software agents. a vast number of them will be economically motivated, and will negociate a variety of goods and services. It is therefore important to consider the economic incentives and behaviours of economic software agents, and to use all available means to anticipate their collective interactions. This papers addresses this concern by presenting a multi-agent market simulator designed for analysing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, consideting risk preferences. The system includes agents that are capable of increasing their performance with their own experience, by adapting to the market conditions. The results of the negotiations between agents are analysed by data minig algorithms in order to extract rules that give agents feedback to imprive their strategies.
Resumo:
O mercado accionista, de uma forma global, tem-se revelado nos últimos tempos uma das principais fontes de incentivo ao mercado de valores mobiliários. O seu impacto junto do público em geral é enorme e a sua importância para as empresas é vital. Interessa, então, perceber como é que a teoria financeira tem obordado a avaliação e a compreensão do processo de formação de uma cotação. Desde os anos 50 até aos dias de hoje, interessa perceber como é que os diferentes autores têm tratado esta abordagem e quais os resultados deste confronto. Interessa sobretudo perceber o abordogem de Stephen Ross e a teoria do arbitragem. Na sequência desta obordagem e com o aparecimento do Multi Index Model, passou a ser possível extimar com maior precisão a evolução da cotação, na medida em que esta estaria dependente de um vasto conjunto de variavéis, que abragem uma vasta área de influência. O contributo de Ross é por isso decisivo. No final interessa reter a melhor técnica e teoria, que defende os interesses do investidor. Face o isto resta, então, saber qual a melhor técnica estatística para proceder a estes estudos empíricos.
Resumo:
This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.
Resumo:
The current ubiquitous network access and increase in network bandwidth are driving the sales of mobile location-aware user devices and, consequently, the development of context-aware applications, namely location-based services. The goal of this project is to provide consumers of location-based services with a richer end-user experience by means of service composition, personalization, device adaptation and continuity of service. Our approach relies on a multi-agent system composed of proxy agents that act as mediators and providers of personalization meta-services, device adaptation and continuity of service for consumers of pre-existing location-based services. These proxy agents, which have Web services interfaces to ensure a high level of interoperability, perform service composition and take in consideration the preferences of the users, the limitations of the user devices, making the usage of different types of devices seamless for the end-user. To validate and evaluate the performance of this approach, use cases were defined, tests were conducted and results gathered which demonstrated that the initial goals were successfully fulfilled.
Resumo:
The environmental management domain is vast and encompasses many identifiable activities: impact assessment, planning, project evaluation, etc. In particular, this paper focusses on the modelling of the project evaluation activity. The environmental decision support system under development aims to provide assistance to project developers in the selection of adequate locations, guaranteeing the compliance with the applicable regulations and the existing development plans as well as satisfying the specified project requirements. The inherent multidisciplinarity features of this activity lead to the adoption of the Multi-Agent paradigm, and, in particular, to the modelling of the involved agencies as a community of cooperative autonomous agents, where each agency contributes with its share of problem solving to the final system’s recommendation. To achieve this behaviour the many conclusions of the individual agencies have to be justifiably accommodated: not only they may differ, but can be interdependent, complementary, irreconcilable, or simply, independent. We propose different solutions (involving both local and global consistency) to support the adequate merge of the distinct perspectives that inevitably arise during this type of decision making.
Resumo:
The ability to respond sensibly to changing and conflicting beliefs is an integral part of intelligent agency. To this end, we outline the design and implementation of a Distributed Assumption-based Truth Maintenance System (DATMS) appropriate for controlling cooperative problem solving in a dynamic real world multi-agent community. Our DATMS works on the principle of local coherence which means that different agents can have different perspectives on the same fact provided that these stances are appropriately justified. The belief revision algorithm is presented, the meta-level code needed to ensure that all system-wide queries can be uniquely answered is described, and the DATMS’ implementation in a general purpose multi-agent shell is discussed.
Resumo:
Multi-agent architectures are well suited for complex inherently distributed problem solving domains. From the many challenging aspects that arise within this framework, a crucial one emerges: how to incorporate dynamic and conflicting agent beliefs? While the belief revision activity in a single agent scenario is concentrated on incorporating new information while preserving consistency, in a multi-agent system it also has to deal with possible conflicts between the agents perspectives. To provide an adequate framework, each agent, built as a combination of an assumption based belief revision system and a cooperation layer, was enriched with additional features: a distributed search control mechanism allowing dynamic context management, and a set of different distributed consistency methodologies. As a result, a Distributed Belief Revision Testbed (DiBeRT) was developed. This paper is a preliminary report presenting some of DiBeRT contributions: a concise representation of external beliefs; a simple and innovative methodology to achieve distributed context management; and a reduced inter-agent data exchange format.
Resumo:
In a real world multiagent system, where the agents are faced with partial, incomplete and intrinsically dynamic knowledge, conflicts are inevitable. Frequently, different agents have goals or beliefs that cannot hold simultaneously. Conflict resolution methodologies have to be adopted to overcome such undesirable occurrences. In this paper we investigate the application of distributed belief revision techniques as the support for conflict resolution in the analysis of the validity of the candidate beams to be produced in the CERN particle accelerators. This CERN multiagent system contains a higher hierarchy agent, the Specialist agent, which makes use of meta-knowledge (on how the con- flicting beliefs have been produced by the other agents) in order to detect which beliefs should be abandoned. Upon solving a conflict, the Specialist instructs the involved agents to revise their beliefs accordingly. Conflicts in the problem domain are mapped into conflicting beliefs of the distributed belief revision system, where they can be handled by proven formal methods. This technique builds on well established concepts and combines them in a new way to solve important problems. We find this approach generally applicable in several domains.
Resumo:
Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.