22 resultados para Molecular Transport
Resumo:
JORNADAS DE ELECTROQUÍMICA E INOVAÇÃO 2013
Resumo:
6th Graduate Student Symposium on Molecular Imprinting
Resumo:
III Jornadas de Electroquímica e Inovação (Electroquímica e Nanomateriais), na Universidade de Trás-os-Montes e Alto Douro, Vila Real, 16 a 17 de Setembro de 2013
Resumo:
Graduate Student Symposium on Molecular Imprinting 2013, na Queen’s University, Belfast, United Kingdom, 15 a 17 de Agosto de 2013
Resumo:
Background Erectile dysfunction (ED) is a prevalent complication of diabetes, and oxidative stress is an important feature of diabetic ED. Oxidative stress-induced damage plays a pivotal role in the development of tissue alterations. However, the deleterious effects of oxidative stress in the corpus cavernosum with the progression of diabetes remain unclear. The aim of this study was to evaluate systemic and penile oxidative stress status in the early and late stages of diabetes. Methods Male Wistar streptozotocin-diabetic rats (and age-matched controls) were examined 2 (early) and 8 weeks (late) after the induction of diabetes. Systemic oxidative stress was evaluated by urinary H2O2 and the ratio of circulating reduced/oxidized glutathione (GSH/GSSG). Penile oxidative status was assessed by H2O2 production and 3-nitrotyrosine (3-NT) formation. Cavernosal endothelial nitric oxide synthase (eNOS) was analyzed by quantitative immunohistochemistry. Dual immunofluorescence was also performed for 3-NT and α-smooth muscle actin (α-SMA) and eNOS–α-SMA. Results There was a significant increase in urinary H2O2 levels in both diabetic groups. The plasma GSH/GSSG ratio was significantly augmented in late diabetes. In cavernosal tissue, H2O2 production was significantly increased in late diabetes. Reactivity for 3-NT was located predominantly in cavernosal smooth muscle (SM) and was significantly reduced in late diabetes. Quantitative immunohistochemistry revealed a significant decrease in eNOS levels in cavernosal SM and endothelium in late diabetes. Conclusions The findings indicate that the noxious effects of oxidative stress are more prominent in late diabetes. Increased penile protein oxidative modifications and decreased eNOS expression may be responsible for structural and/or functional deregulation, contributing to the progression of diabetes-associated ED.
Resumo:
This work aims to shed some light on longshore sediment transport (LST) in the highly energetic northwest coast of Portugal. Data achieved through a sand-tracer experiment are compared with data obtained from the original and the new re-evaluated longshore sediment transport formulas (USACE Waterways Experiment Station’s Coastal Engineering and Research Center, Kamphuis, and Bayram bulk formulas) to assess their performance. The field experiment with dyed sand was held at Ofir Beach during one tidal cycle under medium wave-energy conditions. Local hydrodynamic conditions and beach topography were recorded. The tracer was driven southward in response to the local swell and wind- and wave-induced currents (Hsb=0.75mHsb=0.75m, Tp=11.5sTp=11.5s, θb=8−12°θb=8−12°). The LST was estimated by using a linear sediment transport flux approach. The obtained value (2.3×10−3m3⋅s−12.3×10−3m3⋅s−1) approached the estimation provided by the original Bayram formula (2.5×10−3m3⋅s−12.5×10−3m3⋅s−1). The other formulas overestimated the transport, but the estimations resulting from the new re-evaluated formulas also yield approximate results. Therefore, the results of this work indicated that the Bayram formula may give satisfactory results for predicting the longshore sediment transport on Ofir Beach.
Resumo:
Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.