17 resultados para Molecular Signals
Resumo:
Power laws, also known as Pareto-like laws or Zipf-like laws, are commonly used to explain a variety of real world distinct phenomena, often described merely by the produced signals. In this paper, we study twelve cases, namely worldwide technological accidents, the annual revenue of America׳s largest private companies, the number of inhabitants in America׳s largest cities, the magnitude of earthquakes with minimum moment magnitude equal to 4, the total burned area in forest fires occurred in Portugal, the net worth of the richer people in America, the frequency of occurrence of words in the novel Ulysses, by James Joyce, the total number of deaths in worldwide terrorist attacks, the number of linking root domains of the top internet domains, the number of linking root domains of the top internet pages, the total number of human victims of tornadoes occurred in the U.S., and the number of inhabitants in the 60 most populated countries. The results demonstrate the emergence of statistical characteristics, very close to a power law behavior. Furthermore, the parametric characterization reveals complex relationships present at higher level of description.
Resumo:
Background Erectile dysfunction (ED) is a prevalent complication of diabetes, and oxidative stress is an important feature of diabetic ED. Oxidative stress-induced damage plays a pivotal role in the development of tissue alterations. However, the deleterious effects of oxidative stress in the corpus cavernosum with the progression of diabetes remain unclear. The aim of this study was to evaluate systemic and penile oxidative stress status in the early and late stages of diabetes. Methods Male Wistar streptozotocin-diabetic rats (and age-matched controls) were examined 2 (early) and 8 weeks (late) after the induction of diabetes. Systemic oxidative stress was evaluated by urinary H2O2 and the ratio of circulating reduced/oxidized glutathione (GSH/GSSG). Penile oxidative status was assessed by H2O2 production and 3-nitrotyrosine (3-NT) formation. Cavernosal endothelial nitric oxide synthase (eNOS) was analyzed by quantitative immunohistochemistry. Dual immunofluorescence was also performed for 3-NT and α-smooth muscle actin (α-SMA) and eNOS–α-SMA. Results There was a significant increase in urinary H2O2 levels in both diabetic groups. The plasma GSH/GSSG ratio was significantly augmented in late diabetes. In cavernosal tissue, H2O2 production was significantly increased in late diabetes. Reactivity for 3-NT was located predominantly in cavernosal smooth muscle (SM) and was significantly reduced in late diabetes. Quantitative immunohistochemistry revealed a significant decrease in eNOS levels in cavernosal SM and endothelium in late diabetes. Conclusions The findings indicate that the noxious effects of oxidative stress are more prominent in late diabetes. Increased penile protein oxidative modifications and decreased eNOS expression may be responsible for structural and/or functional deregulation, contributing to the progression of diabetes-associated ED.