65 resultados para Mixed integer linear programming (MILP) model
Resumo:
O planeamento de redes de distribuição tem como objetivo assegurar a existência de capacidade nas redes para a fornecimento de energia elétrica com bons níveis de qualidade de serviço tendo em conta os fatores económicos associados. No âmbito do trabalho apresentado na presente dissertação, foi elaborado um modelo de planeamento que determina a configuração de rede resultante da minimização de custos associados a: 1) perdas por efeito de joule; 2) investimento em novos componentes; 3) energia não entregue. A incerteza associada ao valor do consumo de cada carga é modelada através de lógica difusa. O problema de otimização definido é resolvido pelo método de decomposição de benders que contempla dois trânsitos de potências ótimos (modelo DC e modelo AC) no problema mestre e escravo respectivamente para validação de restrições. Foram também definidos critérios de paragem do método de decomposição de benders. O modelo proposto classifica-se como programação não linear inteira mista e foi implementado na ferramenta de otimização General Algebraic Modeling System (GAMS). O modelo desenvolvido tem em conta todos componentes das redes para a otimização do planeamento, conforme podemos analisar nos casos de estudo implementados. Cada caso de estudo é definido pela variação da importância que cada uma das variáveis do problema toma, tendo em vista cobrir de alguma todos os cenários de operação expetáveis. Através destes casos de estudo verifica-se as várias configurações que a rede pode tomar, tendo em conta as importâncias atribuídas a cada uma das variáveis, bem como os respetivos custos associados a cada solução. Este trabalho oferece um considerável contributo no âmbito do planeamento de redes de distribuição, pois comporta diferentes variáveis para a execução do mesmo. É também um modelo bastante robusto não perdendo o ‘norte’ no encontro de solução para redes de grande dimensão, com maior número de componentes.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
A sustentabilidade do sistema energético é crucial para o desenvolvimento económico e social das sociedades presentes e futuras. Para garantir o bom funcionamento dos sistemas de energia actua-se, tipicamente, sobre a produção e sobre as redes de transporte e de distribuição. No entanto, a integração crescente de produção distribuída, principalmente nas redes de distribuição de média e de baixa tensão, a liberalização dos mercados energéticos, o desenvolvimento de mecanismos de armazenamento de energia, o desenvolvimento de sistemas automatizados de controlo de cargas e os avanços tecnológicos das infra-estruturas de comunicação impõem o desenvolvimento de novos métodos de gestão e controlo dos sistemas de energia. O contributo deste trabalho é o desenvolvimento de uma metodologia de gestão de recursos energéticos num contexto de SmartGrids, considerando uma entidade designada por VPP que gere um conjunto de instalações (unidades produtoras, consumidores e unidades de armazenamento) e, em alguns casos, tem ao seu cuidado a gestão de uma parte da rede eléctrica. Os métodos desenvolvidos contemplam a penetração intensiva de produção distribuída, o aparecimento de programas de Demand Response e o desenvolvimento de novos sistemas de armazenamento. São ainda propostos níveis de controlo e de tomada de decisão hierarquizados e geridos por entidades que actuem num ambiente de cooperação mas também de concorrência entre si. A metodologia proposta foi desenvolvida recorrendo a técnicas determinísticas, nomeadamente, à programação não linear inteira mista, tendo sido consideradas três funções objectivo distintas (custos mínimos, emissões mínimas e cortes de carga mínimos), originando, posteriormente, uma função objectivo global, o que permitiu determinar os óptimos de Pareto. São ainda determinados os valores dos custos marginais locais em cada barramento e consideradas as incertezas dos dados de entrada, nomeadamente, produção e consumo. Assim, o VPP tem ao seu dispor um conjunto de soluções que lhe permitirão tomar decisões mais fundamentadas e de acordo com o seu perfil de actuação. São apresentados dois casos de estudo. O primeiro utiliza uma rede de distribuição de 32 barramentos publicada por Baran & Wu. O segundo caso de estudo utiliza uma rede de distribuição de 114 barramentos adaptada da rede de 123 barramentos do IEEE.
Resumo:
Este trabalho pretende resolver o problema das alocações de salas a exames no Departamento de Engenharia Mecânica do Instituto Superior de Engenharia do Porto. A solução desenvolvida atribui salas a exames respeitando as restrições de capacidade de salas e a restrição de realização dum único exame por sala num determinado período, por forma a minimizar a atribuição de salas e, consequentemente, docentes a exames. Foi criado um modelo matemático, que representa as variáveis relevantes do problema, e realiza a sua implementação numa plataforma informática amigável para o utilizador. O modelo matemático foi validado comparando as suas soluções com as obtidas através do processo manual. Os resultados do novo método demonstram a sua supremacia relativamente ao modelo atual. No futuro, poderá ser estudada a possibilidade de usar esta ferramenta na resolução do mesmo problema em realidades diferentes da do Departamento de Engenharia Mecânica do ISEP.
Resumo:
23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France. Best Paper Award Nominee
Resumo:
Tipicamente as redes elétricas de distribuição apresentam uma topologia parcialmente malhada e são exploradas radialmente. A topologia radial é obtida através da abertura das malhas nos locais que otimizam o ponto de operação da rede, através da instalação de aparelhos de corte que operam normalmente abertos. Para além de manterem a topologia radial, estes equipamentos possibilitam também a transferência de cargas entre saídas, aquando da ocorrência de defeitos. As saídas radiais são ainda dotadas de aparelhos de corte que operam normalmente fechados, estes têm como objetivo maximizar a fiabilidade e isolar defeitos, minimizando a área afetada pelos mesmos. Assim, na presente dissertação são desenvolvidos dois algoritmos determinísticos para a localização ótima de aparelhos de corte normalmente abertos e fechados, minimizando a potência ativa de perdas e o custo da energia não distribuída. O algoritmo de localização de aparelhos de corte normalmente abertos visa encontrar a topologia radial ótima que minimiza a potência ativa de perdas. O método é desenvolvido em ambiente Matlab – Tomlab, e é formulado como um problema de programação quadrática inteira mista. A topologia radial ótima é garantida através do cálculo de um trânsito de potências ótimo baseado no modelo DC. A função objetivo é dada pelas perdas por efeito de Joule. Por outro lado o problema é restringido pela primeira lei de Kirchhoff, limites de geração das subestações, limites térmicos dos condutores, trânsito de potência unidirecional e pela condição de radialidade. Os aparelhos de corte normalmente fechados são localizados ao longo das saídas radiais obtidas pelo anterior algoritmo, e permite minimizar o custo da energia não distribuída. No limite é possível localizar um aparelho de corte normalmente fechado em todas as linhas de uma rede de distribuição, sendo esta a solução que minimiza a energia não distribuída. No entanto, tendo em conta que a cada aparelho de corte está associado um investimento, é fundamental encontrar um equilíbrio entre a melhoria de fiabilidade e o investimento. Desta forma, o algoritmo desenvolvido avalia os benefícios obtidos com a instalação de aparelhos de corte normalmente fechados, e retorna o número e a localização dos mesmo que minimiza o custo da energia não distribuída. Os métodos apresentados são testados em duas redes de distribuição reais, exploradas com um nível de tensão de 15 kV e 30 kV, respetivamente. A primeira rede é localizada no distrito do Porto e é caraterizada por uma topologia mista e urbana. A segunda rede é localizada no distrito de Bragança e é caracterizada por uma topologia maioritariamente aérea e rural.
Resumo:
This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.
Resumo:
Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.
Multi-criteria optimisation approach to increase the delivered power in radial distribution networks
Resumo:
This study proposes a new methodology to increase the power delivered to any load point in a radial distribution network, through the identification of new investments in order to improve the repair time. This research work is innovative and consists in proposing a full optimisation model based on mixed-integer non-linear programming considering the Pareto front technique. The goal is to achieve a reduction in repair times of the distribution networks components, while minimising the costs of that reduction as well as non-supplied energy costs. The optimisation model considers the distribution network technical constraints, the substation transformer taps, and it is able to choose the capacitor banks size. A case study based on a 33-bus distribution network is presented in order to illustrate in detail the application of the proposed methodology.
Resumo:
As centrais termoelétricas convencionais convertem apenas parte do combustível consumido na produção de energia elétrica, sendo que outra parte resulta em perdas sob a forma de calor. Neste sentido, surgiram as unidades de cogeração, ou Combined Heat and Power (CHP), que permitem reaproveitar a energia dissipada sob a forma de energia térmica e disponibilizá-la, em conjunto com a energia elétrica gerada, para consumo doméstico ou industrial, tornando-as mais eficientes que as unidades convencionais Os custos de produção de energia elétrica e de calor das unidades CHP são representados por uma função não-linear e apresentam uma região de operação admissível que pode ser convexa ou não-convexa, dependendo das caraterísticas de cada unidade. Por estas razões, a modelação de unidades CHP no âmbito do escalonamento de geradores elétricos (na literatura inglesa Unit Commitment Problem (UCP)) tem especial relevância para as empresas que possuem, também, este tipo de unidades. Estas empresas têm como objetivo definir, entre as unidades CHP e as unidades que apenas geram energia elétrica ou calor, quais devem ser ligadas e os respetivos níveis de produção para satisfazer a procura de energia elétrica e de calor a um custo mínimo. Neste documento são propostos dois modelos de programação inteira mista para o UCP com inclusão de unidades de cogeração: um modelo não-linear que inclui a função real de custo de produção das unidades CHP e um modelo que propõe uma linearização da referida função baseada na combinação convexa de um número pré-definido de pontos extremos. Em ambos os modelos a região de operação admissível não-convexa é modelada através da divisão desta àrea em duas àreas convexas distintas. Testes computacionais efetuados com ambos os modelos para várias instâncias permitiram verificar a eficiência do modelo linear proposto. Este modelo permitiu obter as soluções ótimas do modelo não-linear com tempos computationais significativamente menores. Para além disso, ambos os modelos foram testados com e sem a inclusão de restrições de tomada e deslastre de carga, permitindo concluir que este tipo de restrições aumenta a complexidade do problema sendo que o tempo computacional exigido para a resolução do mesmo cresce significativamente.