19 resultados para Mental depression
Resumo:
Depression is associated with decreased serotonin metabolism and functioning in the central nervous system, evidenced by both animal models of depression and clinical patient studies. Depression is also accompanied by decreased hippocampal neurogenesis in diverse animal models. Neurogenesis is mainly defined in dentate gyrus of hippocampus as well as subventricular zone. Moreover, hypothalamus, amygdala, olfactory tubercle, and piriform cortex are reported with evidences of adult neurogenesis. Physical exercise is found to modulate adult neurogenesis significantly, and results in mood improvement. The cellular mechanism such as adult neurogenesis upregulation was considered as one major mood regulator following exercise. The recent advances in molecular mechanisms underlying exercise-regulated neurogenesis have widen our understanding in brain plasticity in physiological and pathological conditions, and therefore better management of different psychiatric disorders.
Resumo:
Microbiota is a set of microorganisms resident in gut ecosystem that reacts to psychological stressful stimuli, and is involved in depressed or anxious status in both animals and human being. Interestingly, a series of studies have shown the effects of physical exercise on gut microbiota dynamics, suggesting that gut microbiota regulation might act as one mediator for the effects of exercise on the brain. Recent studies found that gut microbiota dynamics are also regulated by metabolism changes, such as through physical exercise or diet change. Interestingly, physical exercise modulates different population of gut bacteria in compared to food restriction or rich diet, and alleviates gut syndromes to toxin intake. Gut microbiota could as well contribute to the beneficial effects of exercise on cognition and emotion, either directly through serotonin signaling or indirectly by modulating metabolism and exercise performance.
Resumo:
Exercise promotes several health benefits, such as cardiovascular, musculoskeletal and cardiorespiratory improvements. It is believed that the practice of exercise in individuals with psychiatric disorders, e.g. schizophrenia, can cause significant changes. Schizophrenic patients have problematic lifestyle habits compared with general population; this may cause a high mortality rate, mainly caused by cardiovascular and metabolic diseases. Thus, the aim of this study is to investigate changes in physical and mental health, cognitive and brain functioning due to the practice of exercise in patients with schizophrenia. Although still little is known about the benefits of exercise on mental health, cognitive and brain functioning of schizophrenic patients, exercise training has been shown to be a beneficial intervention in the control and reduction of disease severity. Type of training, form of execution, duration and intensity need to be better studied as the effects on physical and mental health, cognition and brain activity depend exclusively of interconnected factors, such as the combination of exercise and medication. However, one should understand that exercise is not only an effective nondrug alternative, but also acts as a supporting linking up interventions to promote improvements in process performance optimization. In general, the positive effects on mental health, cognition and brain activity as a result of an exercise program are quite evident. Few studies have been published correlating effects of exercise in patients with schizophrenia, but there is increasing evidence that positive and negative symptoms can be improved. Therefore, it is important that further studies be undertaken to expand the knowledge of physical exercise on mental health in people with schizophrenia, as well as its dose-response and the most effective type of exercise.
Resumo:
Background Hippocampal neurogenesis has been suggested as a downstream event of antidepressants (AD) mechanism of action and might explain the lag time between AD administration and the therapeutic effect. Despite the widespread use of AD in the context of Major Depressive Disorder (MDD) there are no reliable biomarkers of treatment response phenotypes, and a significant proportion of patients display Treatment Resistant Depression (TRD). Fas/FasL system is one of the best-known death-receptor mediated cell signaling systems and is recognized to regulate cell proliferation and tumor cell growth. Recently this pathway has been described to be involved in neurogenesis and neuroplasticity. Methods Since FAS -670A>G and FASL -844T>C functional polymorphisms never been evaluated in the context of depression and antidepressant therapy, we genotyped FAS -670A>G and FASL -844T>C in a subset of 80 MDD patients to evaluate their role in antidepressant treatment response phenotypes. Results We found that the presence of FAS -670G allele was associated with antidepressant bad prognosis (relapse or TRD: OR=6.200; 95% CI: [1.875–20.499]; p=0.001), and we observed that patients carrying this allele have a higher risk to develop TRD (OR=10.895; 95% CI: [1.362–87.135]; p=0.008).Moreover, multivariate analysis adjusted to potentials confounders showed that patients carrying G allele have higher risk of early relapse (HR=3.827; 95% CI: [1.072–13.659]; p=0.039). FAS mRNA levels were down-regulated among G carriers, whose genotypes were more common in TRD patients. No association was found between FASL-844T>C genetic polymorphism and any treatment phenotypes. Limitations Small sample size. Patients used antidepressants with different mechanisms of action. Conclusion To the best of our knowledge this is the first study to evaluate the role of FAS functional polymorphism in the outcome of antidepressant therapy. This preliminary report associates FAS -670A>G genetic polymorphism with Treatment Resistant Depression and with time to relapse. The current results may possibly be given to the recent recognized role of Fas in neurogenesis and/or neuroplasticity.