59 resultados para Membrane-covered self-expanding metal stent (SEMS)
Resumo:
The objective of this paper is to review and discuss the literature about volunteers’ motivations to donate their time to NGOs (Non Governmental Organisations). According to Parboteeah, Cullenb & Lim (2004) management research has not paid much attention to voluntarism, however, voluntarism is a substantial part of productive work for many societies. Wilson & Pimm (1996) show that in Great Britain about 39% of the adult population has been involved in some volunteer activity for some period of time. In the U.S.A. these values reach 50% (Wilson & Pimm, 1996). Considering the benefits that voluntarism can bring to an organisation, we understand that more attention must be devoted to this phenomenon. The more an organisation knows volunteers, the better this organisation will be able to meet the needs and expectations of these individuals. We present a literature review that illustrates and compares the different motivations associated with volunteer work. The paper includes a bibliographical databases search in specialised journals. The search used the key words “motivations” and “voluntarism” (in the heading and text body) and covered all numbers between 2000 and 2007. We identify the existence of repeated motivations (Holmberg & Söderlung, 2005; Prouteau & Wolff, 2008; Soupourmas & Ironmonger, 2001; Yavas & Riecken, 1997), which allow the establishment of a typology of volunteers’ motivations, based on four categories: altruism, social needs, self-esteem, learning and self-development. Finally we identify three main gaps in the literature that justify further research. First, research focusing on the differences between motivations related to volunteers’ "Attraction" versus "Retention" in NGO’s is nil. Second, the great majority of the studies rely on north American (USA and Canada) and Australian context, which demands for further research in European countries. Third, the majority of NGOs researched are related to sport, art or the environment, and it would be interesting to explore the relationship between motivation and NGO type. These questions may obtain interesting answers for NGO management, in particular with regard to volunteer attraction and retention.
Resumo:
The performance of an amperometric biosensor constructed by associating tyrosinase (Tyr) enzyme with the advantages of a 3D gold nanoelectrode ensemble (GNEE) is evaluated in a flow-injection analysis (FIA) system for the analysis of l-dopa. GNEEs were fabricated by electroless deposition of the metal within the pores of polycarbonate track-etched membranes. A simple solvent etching procedure based on the solubility of polycarbonate membranes is adopted for the fabrication of the 3D GNEE. Afterward, enzyme was immobilized onto preformed self-assembled monolayers of cysteamine on the 3D GNEEs (GNEE-Tyr) via cross-linking with glutaraldehyde. The experimental conditions of the FIA system, such as the detection potential (−0.200 V vs. Ag/AgCl) and flow rates (1.0 mL min−1) were optimized. Analytical responses for l-dopa were obtained in a wide concentration range between 1 × 10−8 mol L−1 and 1 × 10−2 mol L−1. The limit of quantification was found to be 1 × 10−8 mol L−1 with a resultant % RSD of 7.23% (n = 5). The limit of detection was found to be 1 × 10−9 mol L−1 (S/N = 3). The common interfering compounds, namely glucose (10 mmol L−1), ascorbic acid (10 mmol L−1), and urea (10 mmol L−1), were studied. The recovery of l-dopa (1 × 10−7 mol L−1) from spiked urine samples was found to be 96%. Therefore, the developed method is adequate to be applied in the clinical analysis.
Resumo:
Metals are ubiquitous in the environment and accumulate in aquatic organisms and are known for their ability to enhance the production of reactive oxygen species (ROS). In aquatic species, oxidative stress mechanisms have been studied by measuring antioxidant enzyme activities and oxidative damages in tissues. The aim of this study was to apply and validate a set of oxidative stress biomarkers and correlate responses with metal contents in tissues of common octopus (Octopus vulgaris). Antioxidant enzyme activity (catalase — CAT, superoxide dismutase — SOD and glutathione S-transferases — GST), oxidative damages (lipid peroxidation — LPO and protein carbonyl content — PCO) andmetal content (Cu, Zn, Pb, Cd and As) in the digestive gland and armof octopus, collected in the NWPortuguese coast in different periods, were assessed after capture and after 14 days in captivity. CAT and SOD activitieswere highly responsive to fluctuations inmetal concentrations and able to reduce oxidative damage, LPO and PCO in the digestive gland. CAT activity was also positively correlated with SOD and GST activities, which emphasizes that the three enzymes respond in a coordinated way to metal induced oxidative stress. Our results validate the use of oxidative stress biomarkers to assess metal pollution effects in this ecological and commercial relevant species.Moreover, octopus seems to have the ability to control oxidative damage by triggering an antioxidant enzyme coordinated response in the digestive gland.
Resumo:
There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
Resumo:
The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.
Resumo:
In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.
Resumo:
Ascorbic acid is found in many food samples. Its clinical and technological importance demands an easyto- use, rapid, robust and inexpensive method of analysis. For this purpose, this work proposes a new flow procedure based on the oxidation of ascorbic acid by periodate. A new potentiometric periodate sensor was constructed to monitor this reaction. The selective membranes were of PVC with porphyrin-based sensing systems and a lipophilic cation as additive. The sensor displayed a near-Nernstian response for periodate over 1.0x10-2–6.0x10-6 M, with an anionic slope of 73.9 ± 0.9 mV decade-1. It was pH independent in acidic media and presented good selectivity features towards several inorganic anions. The flow set-up operated in double-channel, carrying a 5.0x10-4 M IO- 4 solution and a suitable buffer; these were mixed in a 50-cm reaction coil. The overall flow rate was 7 ml min-1 and the injection volume 70 µl. Under these conditions, a linear behaviour against concentration was observed for 17.7–194.0 µg ml-1, presenting slopes of 0.169 mV (mg/l)-1, a reproducibility of ±1.1 mV (n = 5), and a sampling rate of ~96 samples h-1. The proposed method was applied to the analysis of beverages and pharmaceuticals.
Resumo:
In this work, tin selenide thin films (SnSex) were grown on soda lime glass substrates by selenization of dc magnetron sputtered Sn metallic precursors. Selenization was performed at maximum temperatures in the range 300 °C to 570 °C. The thickness and the composition of the films were analysed using step profilometry and energy dispersive spectroscopy, respectively. The films were structurally and optically investigated by X-ray diffraction, Raman spectroscopy and optical transmittance and reflectance measurements. X-Ray diffraction patterns suggest that for temperatures between 300 °C and 470 °C, the films are composed of the hexagonal-SnSe2 phase. By increasing the temperature, the films selenized at maximum temperatures of 530 °C and 570 °C show orthorhombic-SnSe as the dominant phase with a preferential crystal orientation along the (400) crystallographic plane. Raman scattering analysis allowed the assignment of peaks at 119 cm−1 and 185 cm−1 to the hexagonal-SnSe2 phase and those at 108 cm−1, 130 cm−1 and 150 cm−1 to the orthorhombic-SnSe phase. All samples presented traces of condensed amorphous Se with a characteristic Raman peak located at 255 cm−1. From optical measurements, the estimated band gap energies for hexagonal-SnSe2 were close to 0.9 eV and 1.7 eV for indirect forbidden and direct transitions, respectively. The samples with the dominant orthorhombic-SnSe phase presented estimated band gap energies of 0.95 eV and 1.15 eV for indirect allowed and direct allowed transitions, respectively.
Resumo:
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.
Resumo:
Thin films of Cu2SnS3 and Cu3SnS4 were grown by sulfurization of dc magnetron sputtered Sn–Cu metallic precursors in a S2 atmosphere. Different maximum sulfurization temperatures were tested which allowed the study of the Cu2SnS3 phase changes. For a temperature of 350 ◦C the films were composed of tetragonal (I -42m) Cu2SnS3. The films sulfurized at a maximum temperature of 400 ◦C presented a cubic (F-43m) Cu2SnS3 phase. On increasing the temperature up to 520 ◦C, the Sn content of the layer decreased and orthorhombic (Pmn21) Cu3SnS4 was formed. The phase identification and structural analysis were performed using x-ray diffraction (XRD) and electron backscattered diffraction (EBSD) analysis. Raman scattering analysis was also performed and a comparison with XRD and EBSD data allowed the assignment of peaks at 336 and 351 cm−1 for tetragonal Cu2SnS3, 303 and 355 cm−1 for cubic Cu2SnS3, and 318, 348 and 295 cm−1 for the Cu3SnS4 phase. Compositional analysis was done using energy dispersive spectroscopy and induced coupled plasma analysis. Scanning electron microscopy was used to study the morphology of the layers. Transmittance and reflectance measurements permitted the estimation of absorbance and band gap. These ternary compounds present a high absorbance value close to 104 cm−1. The estimated band gap energy was 1.35 eV for tetragonal (I -42m) Cu2SnS3, 0.96 eV for cubic (F-43m) Cu2SnS3 and 1.60 eV for orthorhombic (Pmn21) Cu3SnS4. A hot point probe was used for the determination of semiconductor conductivity type. The results show that all the samples are p-type semiconductors. A four-point probe was used to obtain the resistivity of these samples. The resistivities for tetragonal Cu2SnS3, cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4 are 4.59 × 10−2 cm, 1.26 × 10−2 cm, 7.40 × 10−4 cm, respectively.
Resumo:
Supported by U. Porto/Santander Totta (IJUP) (PP-IJUP2011-320)
Resumo:
The tribological response of multilayer micro/nanocrystalline diamond coatings grown by the hot filament CVD technique is investigated. These multigrade systems were tailored to comprise a starting microcrystalline diamond (MCD) layer with high adhesion to a silicon nitride (Si3N4) ceramic substrate, and a top nanocrystalline diamond (NCD) layer with reduced surface roughness. Tribological tests were carried out with a reciprocating sliding configuration without lubrication. Such composite coatings exhibit a superior critical load before delamination (130–200 N), when compared to the mono- (60–100 N) and bilayer coatings (110 N), considering ∼10 µm thick films. Regarding the friction behaviour, a short-lived initial high friction coefficient was followed by low friction regimes (friction coefficients between 0.02 and 0.09) as a result of the polished surfaces tailored by the tribological solicitation. Very mild to mild wear regimes (wear coefficient values between 4.1×10−8 and 7.7×10−7 mm3 N−1 m−1) governed the wear performance of the self-mated multilayer coatings when subjected to high-load short-term tests (60–200 N; 2 h; 86 m) and medium-load endurance tests (60 N; 16 h; 691 m).
Resumo:
A new general fitting method based on the Self-Similar (SS) organization of random sequences is presented. The proposed analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the mathematical model is absent but the reduced description in terms of some universal set of the fitting parameters is necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial data set. The general conditions of application of this fitting method describing the response of many complex systems and the forecast possibilities are discussed.
Resumo:
Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
Resumo:
With advancement in computer science and information technology, computing systems are becoming increasingly more complex with an increasing number of heterogeneous components. They are thus becoming more difficult to monitor, manage, and maintain. This process has been well known as labor intensive and error prone. In addition, traditional approaches for system management are difficult to keep up with the rapidly changing environments. There is a need for automatic and efficient approaches to monitor and manage complex computing systems. In this paper, we propose an innovative framework for scheduling system management by combining Autonomic Computing (AC) paradigm, Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems