24 resultados para Integration of Programming Techniques
Resumo:
Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.
Resumo:
The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.
Resumo:
A Realidade Aumentada veio alterar a percepção que o ser humano tem do mundo real. A expansão da nossa realidade à Realidade Virtual possibilita a criação de novas experiencias, cuja aplicabilidade é já tida como natural em diversas situações. No entanto, potenciar este tipo de interacção pode ser um processo complexo, quer por limitações tecnológicas, quer pela gestão dos recursos envolvidos. O desenvolvimento de projectos com realidade aumentada para fins comerciais passa assim muitas vezes pela optimização dos recursos utilizados tendo em consideração as limitações das tecnologias envolventes (sistemas de detecção de movimento e voz, detecção de padrões, GPS, análise de imagens, sensores biométricos, etc.). Com a vulgarização e aceitação das técnicas de Realidade Aumentada em muitas áreas (medicina, educação, lazer, etc.), torna-se também necessário que estas técnicas sejam transversais aos dispositivos que utilizamos diariamente (computadores, tablets, telemóveis etc.). Um dominador comum entre estes dispositivos é a internet uma vez que as aplicações online conseguem abarcar um maior número de pessoas. O objectivo deste projecto era o de criar uma aplicação web com técnicas de Realidade Aumentada e cujos conteúdos fossem geridos pelos utilizadores. O processo de investigação e desenvolvimento deste trabalho passou assim por uma fase fundamental de prototipagem para seleccionar as tecnologias que melhor se enquadravam no tipo de arquitectura pretendida para a aplicação e nas ferramentas de desenvolvimento utilizadas pela empresa onde o projecto foi desenvolvido. A aplicação final é composta por um FrontOffice, responsável por mostrar e interpretar as aplicações criadas e possibilitar a integração com outras aplicações, e um BackOffice que possibilita aos utilizadores, sem conhecimentos de programação, criar novas aplicações de realidade aumentada e gerir os conteúdos multimédia utilizados. A aplicação desenvolvida pode servir de base para outras aplicações e ser reutilizável noutros âmbitos, sempre com o objectivo de reduzir custos de desenvolvimento e de gestão de conteúdos, proporcionando assim a implementação de uma Framework que permite a gestão de conteúdos em diferentes áreas (medicina, educação, lazer, etc.), onde os utilizadores podem criar as suas próprias aplicações, jogos e ferramentas de trabalho. No decorrer do projecto, a aplicação foi validada por especialistas garantindo o cumprimento dos objectivos propostos.
Resumo:
A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
Resumo:
This work is a contribution to the e-Framework, arguably the most prominent e-learning framework today, and consists of the definition of a service for the automatic evaluation of programming exercises. This evaluation domain differs from trivial evaluations modelled by languages such as the IMS Question & Test Interoperability (QTI) specification. Complex evaluation domains justify the development of specialized evaluators that participate in several business processes. These business processes can combine other type of systems such as Programming Contest Management Systems, Learning Management Systems, Integrated Development Environments and Learning Object Repositories where programming exercises are stored as Learning Objects. This contribution describes the implementation approaches used, more precisely, behaviours & requests, use & interactions, applicable standards, interface definition and usage scenarios.
Resumo:
It is widely accepted that solving programming exercises is fundamental to learn how to program. Nevertheless, solving exercises is only effective if students receive an assessment on their work. An exercise solved wrong will consolidate a false belief, and without feedback many students will not be able to overcome their difficulties. However, creating, managing and accessing a large number of exercises, covering all the points in the curricula of a programming course, in classes with large number of students, can be a daunting task without the appropriated tools working in unison. This involves a diversity of tools, from the environments where programs are coded, to automatic program evaluators providing feedback on the attempts of students, passing through the authoring, management and sequencing of programming exercises as learning objects. We believe that the integration of these tools will have a great impact in acquiring programming skills. Our research objective is to manage and coordinate a network of eLearning systems where students can solve computer programming exercises. Networks of this kind include systems such as learning management systems (LMS), evaluation engines (EE), learning objects repositories (LOR) and exercise resolution environments (ERE). Our strategy to achieve the interoperability among these tools is based on a shared definition of programming exercise as a Learning Object (LO).
Resumo:
The LMS plays an indisputable role in the majority of the eLearning environments. This eLearning system type is often used for presenting, solving and grading simple exercises. However, exercises from complex domains, such as computer programming, require heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. This work presents a standard approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach use a pivot component embedded in the LMS with two roles: provide an exercise resolution environment and coordinate the communication between the LMS and other systems exposing their functions as web services. The integration of the pivot component with the LMS relies on the Learning Tools Interoperability. The validation of this approach is made through the integration of the component with LMSs from two vendors.
Resumo:
In recent years emerged several initiatives promoted by educational organizations to adapt Service Oriented Architectures (SOA) to e-learning. These initiatives commonly named eLearning Frameworks share a common goal: to create flexible learning environments by integrating heterogeneous systems already available in many educational institutions. However, these frameworks were designed for integration of systems participating in business like processes rather than on complex pedagogical processes as those related to automatic evaluation. Consequently, their knowledge bases lack some fundamental components that are needed to model pedagogical processes. The objective of the research described in this paper is to study the applicability of eLearning frameworks for modelling a network of heterogeneous eLearning systems, using the automatic evaluation of programming exercises as a case study. The paper surveys the existing eLearning frameworks to justify the selection of the e-Framework. This framework is described in detail and identified the necessary components missing from its knowledge base, more precisely, a service genre, expression and usage model for an evaluation service. The extensibility of the framework is tested with the definition of this service. A concrete model for evaluation of programming exercises is presented as a validation of the proposed approach.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.