44 resultados para Heterogeneous platforms
Resumo:
Modern multicore processors for the embedded market are often heterogeneous in nature. One feature often available are multiple sleep states with varying transition cost for entering and leaving said sleep states. This research effort explores the energy efficient task-mapping on such a heterogeneous multicore platform to reduce overall energy consumption of the system. This is performed in the context of a partitioned scheduling approach and a very realistic power model, which improves over some of the simplifying assumptions often made in the state-of-the-art. The developed heuristic consists of two phases, in the first phase, tasks are allocated to minimise their active energy consumption, while the second phase trades off a higher active energy consumption for an increased ability to exploit savings through more efficient sleep states. Extensive simulations demonstrate the effectiveness of the approach.
Resumo:
Consider the problem of assigning real-time tasks on a heterogeneous multiprocessor platform comprising two different types of processors — such a platform is referred to as two-type platform. We present two linearithmic timecomplexity algorithms, SA and SA-P, each providing the follow- ing guarantee. For a given two-type platform and a given task set, if there exists a feasible task-to-processor-type assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type, then (i) using SA, it is guaranteed to find such a feasible task-to- processor-type assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding 2 a feasible task-to-processor assignment where tasks are not allowed to migrate between processors but given a platform in which processors are 1+α/times faster, where 0<α≤1. The parameter α is a property of the task set — it is the maximum utilization of any task which is less than or equal to 1.
Resumo:
Consider the problem of non-migratively scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform. We ask the following question: Does there exist a phase transition behavior for the two-type heterogeneous multiprocessor scheduling problem? We also provide some initial observations via simulations performed on randomly generated task sets.
Resumo:
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type heterogeneous multiprocessor platform. Each processor is either of type-1 or type-2 with each task having different execution time on each processor type. Jobs can migrate between processors of same type (referred to as intra-type migration) but cannot migrate between processors of different types. We present a new scheduling algorithm namely, LP-Relax(THR) which offers a guarantee that if a task set can be scheduled to meet deadlines by an optimal task assignment scheme that allows intra-type migration then LP-Relax(THR) meets deadlines as well with intra-type migration if given processors 1/THR as fast (referred to as speed competitive ratio) where THR <= 2/3.
Resumo:
Systems composed of distinct operational modes are a common necessity for embedded applications with strict timing requirements. With the emergence of multi-core platforms protocols to handle these systems are required in order to provide this basic functionality.In this work a description on the problems of creating an effective mode-transition protocol are presented and it is proven that in some cases previous single-core protocols can not be extended to handle the mode-transition in multi-core.
Resumo:
Consider the problem of scheduling a set of implicitdeadline sporadic tasks on a heterogeneous multiprocessor so as to meet all deadlines. Tasks cannot migrate and the platform is restricted in that each processor is either of type-1 or type-2 (with each task characterized by a different speed of execution upon each type of processor). We present an algorithm for this problem with a timecomplexity of O(n·m), where n is the number of tasks and m is the number of processors. It offers the guarantee that if a task set can be scheduled by any non-migrative algorithm to meet deadlines then our algorithm meets deadlines as well if given processors twice as fast. Although this result is proven for only a restricted heterogeneous multiprocessor, we consider it significant for being the first realtime scheduling algorithm to use a low-complexity binpacking approach to schedule tasks on a heterogeneous multiprocessor with provably good performance.
Resumo:
We consider the problem of scheduling a multi-mode real-time system upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics upon multiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-conserving scheduling algorithm that employs this policy. It then investigates the characteristics of LLF scheduling, which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test.
Resumo:
A significant number of process control and factory automation systems use PROFIBUS as the underlying fieldbus communication network. The process of properly setting up a PROFIBUS network is not a straightforward task. In fact, a number of network parameters must be set for guaranteeing the required levels of timeliness and dependability. Engineering PROFIBUS networks is even more subtle when the network includes various physical segments exhibiting heterogeneous specifications, such as bus speed or frame formats, just to mention a few. In this paper we provide underlying theory and a methodology to guarantee the proper operation of such type of heterogeneous PROFIBUS networks. We additionally show how the methodology can be applied to the practical case of PROFIBUS networks containing simultaneously DP (Decentralised Periphery) and PA (Process Automation) segments, two of the most used commercial-off-the-shelf (COTS) PROFIBUS solutions. The importance of the findings is however not limited to this case. The proposed methodology can be generalised to cover other heterogeneous infrastructures. Hybrid wired/wireless solutions are just an example for which an enormous eagerness exists.
Resumo:
The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic distributed environments where the characteristics of the computational load cannot always be predicted in advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing power. Rather than assuming that the dynamic configuration of this cooperative service executes until it computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves at each iteration, with an overhead that can be considered negligible.
Resumo:
Our society relies on energy for most of its activities. One application domain inciding heavily on the energy budget regards the energy consumption in residential and non-residential buildings. The ever increasing needs for energy, resulting from the industrialization of developing countries and from the limited scalability of the traditional technologies for energy production, raises both problems and opportunities. The problems are related to the devastating effects of the greenhouse gases produced by the burning of oil and gas for energy production, and from the dependence of whole countries on companies providing gas and oil. The opportunities are mostly technological, since novel markets are opening for both energy production via renewable sources, and for innovations that can rationalize energy usage. An enticing research effort can be the mixing of these two aspects, by leveraging on ICT technologies to rationalize energy production, acquisition, and consumption. The ENCOURAGE project aims to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable active participation in the future smart grid environment.The primary application domains targeted by the ENCOURAGE project are non-residential buildings (e.g.: campuses) and residential buildings (e.g.: neighborhoods). The goal of the project is to achieve 20% of energy savings through the improved interoperability between various types of energy generation, consumption and storage devices; interbuilding energy exchange; and systematic performance monitoring.
Resumo:
As estruturas orgânicas empresariais estão cada vez mais obrigadas a garantir elevados padrões de qualidade de serviços, possibilitando ao mesmo tempo a sustentabilidade das estruturas e ainda, o alinhamento dos investimentos efetuados com as estratégias de negócio. O seu desenvolvimento obriga a que na área das tecnologias de informação e comunicação exista a necessidade de repensar estratégias em vigor, procurando novos modelos, mais ágeis e mais capazes de se enquadrar nestas novas exigências. Neste âmbito, é de esperar que as plataformas de identidade digital tenham um papel determinante no desenvolvimento destes novos modelos, pois são um instrumento único para se implementarem plataformas heterogéneas, intemperáveis, com elevados níveis de segurança e de garantia de controlo no acesso à informação. O trabalho agora apresentado tem como objectivo investigar e desenvolver uma plataforma de identidade digital e uma plataforma de testes, que permitam ao Politécnico do Porto a aquisição de um infraestrutura de Tecnologias de Informação e Comunicação que se torne um instrumento fundamental para o desenvolvimento contínuo, de garantia de qualidade e de sustentabilidade de todos os serviços prestados à sua comunidade.
Resumo:
As the variety of mobile devices connected to the Internet growts there is a correponding increase in the need to deliver content tailored to their heterogeneous characteristics. At the same time, we watch to the increase of e-learning in universities through the adoption of electronic platforms and standards. Not surprisingly, the concept of mLearning (Mobile Learning) appeared in recent years decreasing the limitation of learning location with the mobility of general portable devices. However, this large number and variety of Web-enabled devices poses several challenges for Web content creators who want to automatic get the delivery context and adapt the content to the client mobile devices. In this paper we analyze several approaches to defining delivery context and present an architecture for deliver uniform mLearning content to mobile devices denominated eduMCA - Educational Mobile Content Adaptation. With the eduMCA system the Web authors will not need to create specialized pages for each kind of device, since the content is automatically transformed to adapt to any mobile device capabilities from WAP to XHTML MP-compliant devices.
Resumo:
In recent years, mobile learning has emerged as an educational approach to decrease the limitation of learning location and adapt the teaching-learning process to all type of students. However, the large number and variety of Web-enabled devices poses challenges for Web content creators who want to automatic get the delivery context and adapt the content to mobile devices. In this paper we study several approaches to adapt the learning content to mobile phones. We present an architecture for deliver uniform m-Learning content to students in a higher School. The system development is organized in two phases: firstly enabling the educational content to mobile devices and then adapting it to all the heterogeneous mobile platforms. With this approach, Web authors will not need to create specialized pages for each kind of device, since the content is automatically transformed to adapt to any mobile device capabilities from WAP to XHTML MP-compliant devices.
Resumo:
In recent years emerged several initiatives promoted by educational organizations to adapt Service Oriented Architectures (SOA) to e-learning. These initiatives commonly named eLearning Frameworks share a common goal: to create flexible learning environments by integrating heterogeneous systems already available in many educational institutions. However, these frameworks were designed for integration of systems participating in business like processes rather than on complex pedagogical processes as those related to automatic evaluation. Consequently, their knowledge bases lack some fundamental components that are needed to model pedagogical processes. The objective of the research described in this paper is to study the applicability of eLearning frameworks for modelling a network of heterogeneous eLearning systems, using the automatic evaluation of programming exercises as a case study. The paper surveys the existing eLearning frameworks to justify the selection of the e-Framework. This framework is described in detail and identified the necessary components missing from its knowledge base, more precisely, a service genre, expression and usage model for an evaluation service. The extensibility of the framework is tested with the definition of this service. A concrete model for evaluation of programming exercises is presented as a validation of the proposed approach.