66 resultados para Grid connected PV-plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a simulator for electric vehicles in the context of smart grids and distribution networks. It aims to support network operator´s planning and operations but can be used by other entities for related studies. The paper describes the parameters supported by the current version of the Electric Vehicle Scenario Simulator (EVeSSi) tool and its current algorithm. EVeSSi enables the definition of electric vehicles scenarios on distribution networks using a built-in movement engine. The scenarios created with EVeSSi can be used by external tools (e.g., power flow) for specific analysis, for instance grid impacts. Two scenarios are briefly presented for illustration of the simulator capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for dayahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle- o-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with V2G owners. It takes into account these contracts, the user´s requirements subjected to the VPP, and several discharge price steps. Full AC power flow calculation included in the model allows taking into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33 bus distribution network and V2G is used to illustrate the good performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of energy resource scheduling. An aggregator will manage all distributed resources connected to its distribution network, including distributed generation based on renewable energy resources, demand response, storage systems, and electrical gridable vehicles. The use of gridable vehicles will have a significant impact on power systems management, especially in distribution networks. Therefore, the inclusion of vehicles in the optimal scheduling problem will be very important in future network management. The proposed particle swarm optimization approach is compared with a reference methodology based on mixed integer non-linear programming, implemented in GAMS, to evaluate the effectiveness of the proposed methodology. The paper includes a case study that consider a 32 bus distribution network with 66 distributed generators, 32 loads and 50 electric vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, power systems (PS) already accommodate a substantial penetration of distributed generation (DG) and operate in competitive environments. In the future, as the result of the liberalisation and political regulations, PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage and provide market agents to ensure a flexible and secure operation. This cannot be done with the traditional PS operational tools used today like the quite restricted information systems Supervisory Control and Data Acquisition (SCADA) [1]. The trend to use the local generation in the active operation of the power system requires new solutions for data management system. The relevant standards have been developed separately in the last few years so there is a need to unify them in order to receive a common and interoperable solution. For the distribution operation the CIM models described in the IEC 61968/70 are especially relevant. In Europe dispersed and renewable energy resources (D&RER) are mostly operated without remote control mechanisms and feed the maximal amount of available power into the grid. To improve the network operation performance the idea of virtual power plants (VPP) will become a reality. In the future power generation of D&RER will be scheduled with a high accuracy. In order to realize VPP decentralized energy management, communication facilities are needed that have standardized interfaces and protocols. IEC 61850 is suitable to serve as a general standard for all communication tasks in power systems [2]. The paper deals with international activities and experiences in the implementation of a new data management and communication concept in the distribution system. The difficulties in the coordination of the inconsistent developed in parallel communication and data management standards - are first addressed in the paper. The upcoming unification work taking into account the growing role of D&RER in the PS is shown. It is possible to overcome the lag in current practical experiences using new tools for creating and maintenance the CIM data and simulation of the IEC 61850 protocol – the prototype of which is presented in the paper –. The origin and the accuracy of the data requirements depend on the data use (e.g. operation or planning) so some remarks concerning the definition of the digital interface incorporated in the merging unit idea from the power utility point of view are presented in the paper too. To summarize some required future work has been identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The smart grid concept is rapidly evolving in the direction of practical implementations able to bring smart grid advantages into practice. Evolution in legacy equipment and infrastructures is not sufficient to accomplish the smart grid goals as it does not consider the needs of the players operating in a complex environment which is dynamic and competitive in nature. Artificial intelligence based applications can provide solutions to these problems, supporting decentralized intelligence and decision-making. A case study illustrates the importance of Virtual Power Players (VPP) and multi-player negotiation in the context of smart grids. This case study is based on real data and aims at optimizing energy resource management, considering generation, storage and demand response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O aumento da população Mundial, particularmente em Países emergentes como é o caso da China e da Índia, tem-se relevado um problema adicional no que confere às dificuldades associadas ao consumo mundial de energia, pois esta situação limita inequivocamente o acesso destes milhões de pessoas à energia eléctrica para os bens básicos de sobrevivência. Uma das muitas formas de se extinguir esta necessidade, começa a ser desenvolvida recorrendo ao uso de recursos renováveis como fontes de energia. Independentemente do local do mundo onde nos encontremos, essas fontes de energia são abundantes, inesgotáveis e gratuitas. O problema reside na forma como esses recursos renováveis são geridos em função das solicitações de carga que as instalações necessitam. Sistemas híbridos podem ser usados para produzir energia em qualquer parte do mundo. Historicamente este tipo de sistemas eram aplicados em locais isolados, mas nos dias que correm podem ser usados directamente conectados à rede, permitindo que se realize a venda de energia. Foi neste contexto que esta tese foi desenvolvida, com o objectivo de disponibilizar uma ferramenta informática capaz de calcular a rentabilidade de um sistema híbrido ligado à rede ou isolado. Contudo, a complexidade deste problema é muito elevada, pois existe uma extensa panóplia de características e distintos equipamentos que se pode adoptar. Assim, a aplicação informática desenvolvida teve de ser limitada e restringida aos dados disponíveis de forma a poder tornar-se genérica, mas ao mesmo tempo permitir ter uma aplicabilidade prática. O objectivo da ferramenta informática desenvolvida é apresentar de forma imediata os custos da implementação que um sistema híbrido pode acarretar, dependendo apenas de três variáveis distintas. A primeira variável terá de ter em consideração o local de instalação do sistema. Em segundo lugar é o tipo de ligação (isolado ou ligado à rede) e, por fim, o custo dos equipamentos (eólico, solar e restantes componentes) que serão introduzidos. Após a inserção destes dados a aplicação informática apresenta valores estimados de Payback e VAL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia