52 resultados para Embedded processing
Resumo:
Prostate cancer (PCa) is one of the most incident malignancies worldwide. Although efficient therapy is available for early-stage PCa, treatment of advanced disease is mainly ineffective and remains a clinical challenge. microRNA (miRNA) dysregulation is associated with PCa development and progression. In fact, several studies have reported a widespread downregulation of miRNAs in PCa, which highlights the importance of studying compounds capable of restoring the global miRNA expression. The main aim of this study was to define the usefulness of enoxacin as an anti-tumoral agent in PCa, due to its ability to induce miRNA biogenesis in a TRBP-mediated manner. Using a panel of five PCa cell lines, we observed that all of them were wild type for the TARBP2 gene and expressed TRBP protein. Furthermore, primary prostate carcinomas displayed normal levels of TRBP protein. Remarkably, enoxacin was able to decrease cell viability, induce apoptosis, cause cell cycle arrest, and inhibit the invasiveness of cell lines. Enoxacin was also effective in restoring the global expression of miRNAs. This study is the first to show that PCa cells are highly responsive to the anti-tumoral effects of enoxacin. Therefore, enoxacin constitutes a promising therapeutic agent for PCa.
Resumo:
In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems.
Resumo:
Aerodynamic drag is known to be one of the factors contributing more to increased aircraft fuel consumption. The primary source of skin friction drag during flight is the boundary layer separation. This is the layer of air moving smoothly in the immediate vicinity of the aircraft. In this paper we discuss a cyber-physical system approach able of performing an efficient suppression of the turbulent flow by using a dense sensing deployment to detect the low pressure region and a similarly dense deployment of actuators to manage the turbulent flow. With this concept, only the actuators in the vicinity of a separation layer are activated, minimizing power consumption and also the induced drag.
Resumo:
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms to inter alia enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a huge overhead of device transition. The technology enhancement has allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring the system schedulability. Our results show an energy gain of up to 90% in the best case when compared to the state-of-the-art.
Resumo:
This paper addresses sensor network applications which need to obtain an accurate image of physical phenomena and do so with a high sampling rate in both time and space. We present a fast and scalable approach for obtaining an approximate representation of all sensor readings at high sampling rate for quickly reacting to critical events in a physical environment. This approach is an improvement on previous work in that after the new approach has undergone a startup phase then the new approach can use a very small sampling period.
Resumo:
Despite the steady increase in experimental deployments, most of research work on WSNs has focused only on communication protocols and algorithms, with a clear lack of effective, feasible and usable system architectures, integrated in a modular platform able to address both functional and non–functional requirements. In this paper, we outline EMMON [1], a full WSN-based system architecture for large–scale, dense and real–time embedded monitoring [3] applications. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. Then, EM-Set, the EMMON engineering toolset will be presented. EM-Set includes a network deployment planning, worst–case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset was crucial for the development of EMMON which was designed to use standard commercially available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. Finally, the EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ nodes testbed.
Resumo:
The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions when lower replication ratios are imposed due to resource or cost limitations. The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed environments. The proposed distributed coordination model reduces the complexity of the needed interactions among nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach.
Resumo:
Since its official public release, Android has captured the interest from companies, developers and the general audience. From that time up to now, this software platform has been constantly improved either in terms of features or supported hardware and, at the same time, extended to new types of devices different from the originally intended mobile ones. However, there is a feature that has not been explored yet - its real-time capabilities. This paper intends to explore this gap and provide a basis for discussion on the suitability of Android in order to be used in Open Real-Time environments. By analysing the software platform, with the main focus on the virtual machine and its underlying operating system environments, we are able to point out its current limitations and, therefore, provide a hint on different perspectives of directions in order to make Android suitable for these environments. It is our position that Android may provide a suitable architecture for real-time embedded systems, but the real-time community should address its limitations in a joint effort at all of the platform layers.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system’s performance. This paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The activation of passive replicas is coordinated through a fast convergence protocol that reduces the complexity of the needed interactions among nodes until a new collective global service solution is determined.
Resumo:
Due to the growing complexity and dynamism of many embedded application domains (including consumer electronics, robotics, automotive and telecommunications), it is increasingly difficult to react to load variations and adapt the system's performance in a controlled fashion within an useful and bounded time. This is particularly noticeable when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may exhibit unrestricted QoS inter-dependencies. This paper proposes a novel anytime adaptive QoS control policy in which the online search for the best set of QoS levels is combined with each user's personal preferences on their services' adaptation behaviour. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.
Resumo:
Most of today’s embedded systems are required to work in dynamic environments, where the characteristics of the computational load cannot always be predicted in advance. Furthermore, resource needs are usually data dependent and vary over time. Resource constrained devices may need to cooperate with neighbour nodes in order to fulfil those requirements and handle stringent non-functional constraints. This paper describes a framework that facilitates the distribution of resource intensive services across a community of nodes, forming temporary coalitions for a cooperative QoSaware execution. The increasing need to tailor provided service to each application’s specific needs determines the dynamic selection of peers to form such a coalition. The system is able to react to load variations, degrading its performance in a controlled fashion if needed. Isolation between different services is achieved by guaranteeing a minimal service quality to accepted services and by an efficient overload control that considers the challenges and opportunities of dynamic distributed embedded systems.