36 resultados para Embedded derivative
Resumo:
Due to the growing complexity and dynamism of many embedded application domains (including consumer electronics, robotics, automotive and telecommunications), it is increasingly difficult to react to load variations and adapt the system's performance in a controlled fashion within an useful and bounded time. This is particularly noticeable when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may exhibit unrestricted QoS inter-dependencies. This paper proposes a novel anytime adaptive QoS control policy in which the online search for the best set of QoS levels is combined with each user's personal preferences on their services' adaptation behaviour. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.
Resumo:
Most of today’s embedded systems are required to work in dynamic environments, where the characteristics of the computational load cannot always be predicted in advance. Furthermore, resource needs are usually data dependent and vary over time. Resource constrained devices may need to cooperate with neighbour nodes in order to fulfil those requirements and handle stringent non-functional constraints. This paper describes a framework that facilitates the distribution of resource intensive services across a community of nodes, forming temporary coalitions for a cooperative QoSaware execution. The increasing need to tailor provided service to each application’s specific needs determines the dynamic selection of peers to form such a coalition. The system is able to react to load variations, degrading its performance in a controlled fashion if needed. Isolation between different services is achieved by guaranteeing a minimal service quality to accepted services and by an efficient overload control that considers the challenges and opportunities of dynamic distributed embedded systems.
Resumo:
Penalty and Barrier methods are normally used to solve Nonlinear Optimization Problems constrained problems. The problems appear in areas such as engineering and are often characterised by the fact that involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. This means that optimization methods based on derivatives cannot net used. A Java based API was implemented, including only derivative-free optimizationmethods, to solve both constrained and unconstrained problems, which includes Penalty and Barriers methods. In this work a new penalty function, based on Fuzzy Logic, is presented. This function imposes a progressive penalization to solutions that violate the constraints. This means that the function imposes a low penalization when the violation of the constraints is low and a heavy penalisation when the violation is high. The value of the penalization is not known in beforehand, it is the outcome of a fuzzy inference engine. Numerical results comparing the proposed function with two of the classic penalty/barrier functions are presented. Regarding the presented results one can conclude that the prosed penalty function besides being very robust also exhibits a very good performance.
Resumo:
Constraints nonlinear optimization problems can be solved using penalty or barrier functions. This strategy, based on solving the problems without constraints obtained from the original problem, have shown to be e ective, particularly when used with direct search methods. An alternative to solve the previous problems is the lters method. The lters method introduced by Fletcher and Ley er in 2002, , has been widely used to solve problems of the type mentioned above. These methods use a strategy di erent from the barrier or penalty functions. The previous functions de ne a new one that combine the objective function and the constraints, while the lters method treat optimization problems as a bi-objective problems that minimize the objective function and a function that aggregates the constraints. Motivated by the work of Audet and Dennis in 2004, using lters method with derivative-free algorithms, the authors developed works where other direct search meth- ods were used, combining their potential with the lters method. More recently. In a new variant of these methods was presented, where it some alternative aggregation restrictions for the construction of lters were proposed. This paper presents a variant of the lters method, more robust than the previous ones, that has been implemented with a safeguard procedure where values of the function and constraints are interlinked and not treated completely independently.
Resumo:
Adhesively-bonded techniques offer an attractive option for repair of aluminium structures, and currently there are three widely used configurations, i.e., single-strap (SS), double-strap (DS) and scarf repairs. SS and DS repairs are straightforward to execute but stresses in the adhesive layer peak at the ends of the overlap. DS repairs additionally require both sides of the damaged structures to be reachable for repair, which is often not possible. In these repair configurations, some limitations emerge such as the weight, aerodynamic performance and aesthetics. The scarf repair is more complex to fabricate but stresses are more uniform along the adhesive bondline. Few studies of SS and DS repairs with embedded patches, such that these are completely flush with the adherends, are available in the literature. Furthermore, no data is available about the effects of geometrical and material parameters (e.g. the Young’s modulus of adhesive, E) on the mechanical behaviour optimization of embedded repairs. For this purpose, in this work standard SS and DD repairs, and also with embedded patches in the adherends, were tested under tension to allow the geometry optimization, by varying the overlap length (LO), thus allowing the maximization of the repairs strength. The influence of the patch embedding technique, showing notorious advantages such as aerodynamic or aesthetics, was compared in strength with standard strap repairs, for the viability analysis of its implementation. As a result of this work, some conclusions were drawn for the design optimization of bonded repairs on aluminium structures.
Resumo:
Debugging electronic circuits is traditionally done with bench equipment directly connected to the circuit under debug. In the digital domain, the difficulties associated with the direct physical access to circuit nodes led to the inclusion of resources providing support to that activity, first at the printed circuit level, and then at the integrated circuit level. The experience acquired with those solutions led to the emergence of dedicated infrastructures for debugging cores at the system-on-chip level. However, all these developments had a small impact in the analog and mixed-signal domain, where debugging still depends, to a large extent, on direct physical access to circuit nodes. As a consequence, when analog and mixed-signal circuits are integrated as cores inside a system-on-chip, the difficulties associated with debugging increase, which cause the time-to-market and the prototype verification costs to also increase. The present work considers the IEEE1149.4 infrastructure as a means to support the debugging of mixed-signal circuits, namely to access the circuit nodes and also an embedded debug mechanism named mixed-signal condition detector, necessary for watch-/breakpoints and real-time analysis operations. One of the main advantages associated with the proposed solution is the seamless migration to the system-on-chip level, as the access is done through electronic means, thus easing debugging operations at different hierarchical levels.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
Task scheduling is one of the key mechanisms to ensure timeliness in embedded real-time systems. Such systems have often the need to execute not only application tasks but also some urgent routines (e.g. error-detection actions, consistency checkers, interrupt handlers) with minimum latency. Although fixed-priority schedulers such as Rate-Monotonic (RM) are in line with this need, they usually make a low processor utilization available to the system. Moreover, this availability usually decreases with the number of considered tasks. If dynamic-priority schedulers such as Earliest Deadline First (EDF) are applied instead, high system utilization can be guaranteed but the minimum latency for executing urgent routines may not be ensured. In this paper we describe a scheduling model according to which urgent routines are executed at the highest priority level and all other system tasks are scheduled by EDF. We show that the guaranteed processor utilization for the assumed scheduling model is at least as high as the one provided by RM for two tasks, namely 2(2√−1). Seven polynomial time tests for checking the system timeliness are derived and proved correct. The proposed tests are compared against each other and to an exact but exponential running time test.
Resumo:
Adhesively bonded repairs offer an attractive option for repair of aluminium structures, compared to more traditional methods such as fastening or welding. The single-strap (SS) and double-strap (DS) repairs are very straightforward to execute but stresses in the adhesive layer peak at the overlap ends. The DS repair requires both sides of the damaged structures to be reachable for repair, which is often not possible. In strap repairs, with the patches bonded at the outer surfaces, some limitations emerge such as the weight, aerodynamics and aesthetics. To minimize these effects, SS and DS repairs with embedded patches were evaluated in this work, such that the patches are flush with the adherends. For this purpose, in this work standard SS and DS repairs, and also with the patches embedded in the adherends, were tested under tension to allow the optimization of some repair variables such as the overlap length (LO) and type of adhesive, thus allowing the maximization of the repair strength. The effect of embedding the patch/patches on the fracture modes and failure loads was compared with finite elements (FE) analysis. The FE analysis was performed in ABAQUS® and cohesive zone modelling was used for the simulation of damage onset and growth in the adhesive layer. The comparison with the test data revealed an accurate prediction for all kinds of joints and provided some principles regarding this technique.
Resumo:
The fractal geometry is used to model of a naturally fractured reservoir and the concept of fractional derivative is applied to the diffusion equation to incorporate the history of fluid flow in naturally fractured reservoirs. The resulting fractally fractional diffusion (FFD) equation is solved analytically in the Laplace space for three outer boundary conditions. The analytical solutions are used to analyze the response of a naturally fractured reservoir considering the anomalous behavior of oil production. Several synthetic examples are provided to illustrate the methodology proposed in this work and to explain the diffusion process in fractally fractured systems.
Resumo:
An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved. Technology enhancements in the semiconductor industry have allowed the hardware vendors to reduce the device transition and energy overheads. The decrease in overhead of sleep transitions has opened new opportunities to further reduce the device energy consumption. In this research effort, we propose an intra-task device scheduling algorithm for real-time systems that wakes up a device on demand and reduces its active time while ensuring system schedulability. This intra-task device scheduling algorithm is extended for devices with multiple sleep states to further minimise the overall device energy consumption of the system. The proposed algorithms have less complexity when compared to the conservative inter-task device scheduling algorithms. The system model used relaxes some of the assumptions commonly made in the state-of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the proposed algorithms are shown to demonstrate the substantial energy savings.
Resumo:
Over the past decades several approaches for schedulability analysis have been proposed for both uni-processor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for mis-interpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by-construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uni-processor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.
Resumo:
This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grünwald–Letnikov, Riemann–Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential.
Resumo:
It is imperative to accept that failures can and will occur, even in meticulously designed distributed systems, and design proper measures to counter those failures. Passive replication minimises resource consumption by only activating redundant replicas in case of failures, as typically providing and applying state updates is less resource demanding than requesting execution. However, most existing solutions for passive fault tolerance are usually designed and configured at design time, explicitly and statically identifying the most critical components and their number of replicas, lacking the needed flexibility to handle the runtime dynamics of distributed component-based embedded systems. This paper proposes a cost-effective adaptive fault tolerance solution with a significant lower overhead compared to a strict active redundancy-based approach, achieving a high error coverage with the minimum amount of redundancy. The activation of passive replicas is coordinated through a feedback-based coordination model that reduces the complexity of the needed interactions among components until a new collective global service solution is determined, improving the overall maintainability and robustness of the system.
Resumo:
EMC2 finds solutions for dynamic adaptability in open systems. It provides handling of mixed criticality multicore applications in r eal-time conditions, withscalability and utmost flexibility, full-scale deployment and management of integrated tool chains, through the entire lifecycle.