57 resultados para Electricity Market and Power Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power systems are planed and operated according to the optimization of the available resources. Traditionally these tasks were mostly undertaken in a centralized way which is no longer adequate in a competitive environment. Demand response can play a very relevant role in this context but adequate tools to negotiate this kind of resources are required. This paper presents an approach to deal with these issues, by using a multi-agent simulator able to model demand side players and simulate their strategic behavior. The paper includes an illustrative case study that considers an incident situation. The distribution company is able to reduce load curtailment due to load flexibility contracts previously established with demand side players.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyber-Physical Systems and Ambient Intelligence are two of the most important and emerging paradigms of our days. The introduction of renewable sources gave origin to a completely different dimension of the distribution generation problem. On the other hand, Electricity Markets introduced a different dimension in the complexity, the economic dimension. Our goal is to study how to proceed with the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the impact of energy and stock markets upon electricity markets using Multidimensional Scaling (MDS). Historical values from major energy, stock and electricity markets are adopted. To analyze the data several graphs produced by MDS are presented and discussed. This method is useful to have a deeper insight into the behavior and the correlation of the markets. The results may also guide the construction models, helping electricity markets agents hedging against Market Clearing Price (MCP) volatility and, simultaneously, to achieve better financial results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy sector in industrialized countries has been restructured in the last years, with the purpose of decreasing electricity prices through the increase in competition, and facilitating the integration of distributed energy resources. However, the restructuring process increased the complexity in market players' interactions and generated emerging problems and new issues to be addressed. In order to provide players with competitive advantage in the market, decision support tools that facilitate the study and understanding of these markets become extremely useful. In this context arises MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), a multi-agent based simulator that models real electricity markets. To reinforce MASCEM with the capability of recreating the electricity markets reality in the fullest possible extent, it is crucial to make it able to simulate as many market models and player types as possible. This paper presents a new negotiation model implemented in MASCEM based on the negotiation model used in day-ahead market (Elspot) of Nord Pool. This is a key module to study competitive electricity markets, as it presents well defined and distinct characteristics from the already implemented markets, and it is a reference electricity market in Europe (the one with the larger amount of traded power).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present VERITAS, a tool that focus time maintenance, that is one of the most important processes in the engineering of the time during the development of KBS. The verification and validation (V&V) process is part of a wider process denominated knowledge maintenance, in which an enterprise systematically gathers, organizes, shares, and analyzes knowledge to accomplish its goals and mission. The V&V process states if the software requirements specifications have been correctly and completely fulfilled. The methodologies proposed in software engineering have showed to be inadequate for Knowledge Based Systems (KBS) validation and verification, since KBS present some particular characteristics. VERITAS is an automatic tool developed for KBS verification which is able to detect a large number of knowledge anomalies. It addresses many relevant aspects considered in real applications, like the usage of rule triggering selection mechanisms and temporal reasoning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.